ﻻ يوجد ملخص باللغة العربية
In single-qubit quantum secret sharing, a secret is shared between N parties via manipulation and measurement of one qubit at a time. Each qubit is sent to all N parties in sequence; the secret is encoded in the first participants preparation of the qubit state and the subsequent participants choices of state rotation or measurement basis. We present a protocol for single-qubit quantum secret sharing using polarization entanglement of photon pairs produced in type-I spontaneous parametric downconversion. We investigate the protocols security against eavesdropping attack under common experimental conditions: a lossy channel for photon transmission, and imperfect preparation of the initial qubit state. A protocol which exploits entanglement between photons, rather than simply polarization correlation, is more robustly secure. We implement the entanglement-based secret-sharing protocol with 87% secret-sharing fidelity, limited by the purity of the entangled state produced by our present apparatus. We demonstrate a photon-number splitting eavesdropping attack, which achieves no success against the entanglement-based protocol while showing the predicted rate of success against a correlation-based protocol.
Quantum protocols for secret sharing usually rely on multi-party entanglement which with present technology is very difficult to achieve. Recently it has been shown that sequential manipulation and communication of a single $d-$ level state can do th
To detect frauds from some internal participants or external attackers, some verifiable threshold quantum secret sharing schemes have been proposed. In this paper, we present a new verifiable threshold structure based on a single qubit using bivariat
In this paper we define a kind of decomposition for a quantum access structure. We propose a conception of minimal maximal quantum access structure and obtain a sufficient and necessary condition for minimal maximal quantum access structure, which sh
We develop a connection between tripartite information $I_3$, secret sharing protocols and multi-unitaries. This leads to explicit ((2,3)) threshold schemes in arbitrary dimension minimizing tripartite information $I_3$. As an application we show tha
In this work, we investigate what kinds of quantum states are feasible to perform perfectly secure secret sharing, and present its necessary and sufficient conditions. We also show that the states are bipartite distillable for all bipartite splits, a