ترغب بنشر مسار تعليمي؟ اضغط هنا

First detections of the [NII] 122 {mu}m line at high redshift: Demonstrating the utility of the line for studying galaxies in the early universe

331   0   0.0 ( 0 )
 نشر من قبل Carl Ferkinhoff
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report the first detections of the [NII] 122 {mu}m line from a high redshift galaxy. The line was strongly (> 6{sigma}) detected from SMMJ02399-0136, and H1413+117 (the Cloverleaf QSO) using the Redshift(z) and Early Universe Spectrometer (ZEUS) on the CSO. The lines from both sources are quite bright with line-to-FIR continuum luminosity ratios that are ~7.0times10^{-4} (Cloverleaf) and 2.1times10^{-3} (SMMJ02399). With ratios 2-10 times larger than the average value for nearby galaxies, neither source exhibits the line-to-continuum deficits seen in nearby sources. The line strengths also indicate large ionized gas fractions, ~8 to 17% of the molecular gas mass. The [OIII]/[NII] line ratio is very sensitive to the effective temperature of ionizing stars and the ionization parameter for emission arising in the narrow-line region (NLR) of an AGN. Using our previous detection of the [OIII] 88 {mu}m line, the [OIII]/[NII] line ratio for SMMJ02399-0136 indicates the dominant source of the line emission is either stellar HII regions ionized by O9.5 stars, or the NLR of the AGN with ionization parameter log(U) = -3.3 to -4.0. A composite system, where 30 to 50% of the FIR lines arise in the NLR also matches the data. The Cloverleaf is best modeled by a superposition of ~200 M82 like starbursts accounting for all of the FIR emission and 43% of the [NII] line. The remainder may come from the NLR. This work demonstrates the utility of the [NII] and [OIII] lines in constraining properties of the ionized medium.



قيم البحث

اقرأ أيضاً

We report the first detection obtained with ALMA of the [N II] 122$mu$m line emission from a galaxy group BRI 1202-0725 at $z=4.69$ consisting of a QSO and a submilimeter-bright galaxy (SMG). Combining with a detection of [N II] 205$mu$m line in both galaxies, we constrain the electron densities of the ionized gas based on the line ratio of [NII]122/205. The derived electron densities are $26^{+12}_{-11}$ and $134^{+50}_{-39}$ cm$^{-3}$ for the SMG and the QSO, respectively. The electron density of the SMG is similar to that of the Galactic Plane and to the average of the local spirals. Higher electron densities by up to a factor of three could, however, be possible for systematic uncertainties of the line flux estimates. The electron density of the QSO is comparable to high-$z$ star-forming galaxies at $z=1.5-2.3$, obtained using rest-frame optical lines and with the lower limits suggested from stacking analysis on lensed starbursts at $z=1-3.6$ using the same tracer of [NII]. Our results suggest a large scatter of electron densities in global scale at fixed star formation rates for extreme starbursts. The success of the [N II] 122$mu$m and 205$mu$m detections at $z=4.69$ demonstrates the power of future systematic surveys of extreme starbursts at $z>4$ for probing the ISM conditions and the effects on surrounding environments.
We infer the UV luminosities of Local Group galaxies at early cosmic times ($z sim 2$ and $z sim 7$) by combining stellar population synthesis modeling with star formation histories derived from deep color-magnitude diagrams constructed from Hubble S pace Telescope (HST) observations. Our analysis provides a basis for understanding high-$z$ galaxies - including those that may be unobservable even with the James Webb Space Telescope (JWST) - in the context of familiar, well-studied objects in the very low-$z$ Universe. We find that, at the epoch of reionization, all Local Group dwarfs were less luminous than the faintest galaxies detectable in deep HST observations of blank fields. We predict that JWST will observe $z sim 7$ progenitors of galaxies similar to the Large Magellanic Cloud today; however, the HST Frontier Fields initiative may already be observing such galaxies, highlighting the power of gravitational lensing. Consensus reionization models require an extrapolation of the observed blank-field luminosity function at $z approx 7$ by at least two orders of magnitude in order to maintain reionization. This scenario requires the progenitors of the Fornax and Sagittarius dwarf spheroidal galaxies to be contributors to the ionizing background at $z sim 7$. Combined with numerical simulations, our results argue for a break in the UV luminosity function from a faint-end slope of $alpha sim -2$ at $M_{rm UV} < -13$ to $alpha sim -1.2$ at lower luminosities. Applied to photometric samples at lower redshifts, our analysis suggests that HST observations in lensing fields at $z sim 2$ are capable of probing galaxies with luminosities comparable to the expected progenitor of Fornax.
The [NII] 122 and 205 mu m transitions are powerful tracers of the ionized gas in the interstellar medium. By combining data from 21 galaxies selected from the Herschel KINGFISH and Beyond the Peak surveys, we have compiled 141 spatially resolved reg ions with a typical size of ~1 kiloparsec, with observations of both [NII] far-infrared lines. We measure [NII] 122/205 line ratios in the ~0.6-6 range, which corresponds to electron gas densities $n_e$~1-300 cm$^{-3}$, with a median value of $n_e$=30 cm$^{-3}$. Variations in the electron density within individual galaxies can be as a high as a factor of ~50, frequently with strong radial gradients. We find that $n_e$ increases as a function of infrared color, dust-weighted mean starlight intensity, and star formation rate surface density ($Sigma_{SFR}$). As the intensity of the [NII] transitions is related to the ionizing photon flux, we investigate their reliability as tracers of the star formation rate (SFR). We derive relations between the [NII] emission and SFR in the low-density limit and in the case of a log-normal distribution of densities. The scatter in the correlation between [NII] surface brightness and $Sigma_{SFR}$ can be understood as a property of the $n_e$ distribution. For regions with $n_e$ close to or higher than the [NII] line critical densities, the low-density limit [NII]-based SFR calibration systematically underestimates the SFR since [NII] emission is collisionally quenched. Finally, we investigate the relation between [NII] emission, SFR, and $n_e$ by comparing our observations to predictions from the MAPPINGS-III code.
103 - Philip Best 2010
In these proceedings we report on HiZELS, the High-z Emission Line Survey, our successful panoramic narrow-band Campaign Survey using WFCAM on UKIRT to detect and study emission line galaxies at z~1-9. HiZELS employs the H2(S1) narrow-band filter tog ether with custom-made narrow-band filters in the J and H-bands, with the primary aim of delivering large, identically-selected samples of H-alpha emitting galaxies at redshifts of 0.84, 1.47 and 2.23. Comparisons between the luminosity function, the host galaxy properties, the clustering, and the variation with environment of these H-alpha-selected samples are yielding unique constraints on the nature and evolution of star-forming galaxies, across the peak epoch of star-formation activity in the Universe. We provide a summary of the project status, and detail the main scientific results obtained so far: the measurement of the evolution of the cosmic star-formation rate density out to z > 2 using a single star-formation indicator, determination of the morphologies, environments and dust-content of the star-forming galaxies, and a detailed investigation of the evolution of their clustering properties. We also summarise the on-going work and future goals of the project.
We use GOODS and CANDELS images to identify progenitors of massive (log M > 10 Msun) compact early-type galaxies (ETGs) at z~1.6. Since merging and accretion increase the size of the stellar component of galaxies, if the progenitors are among known s tar-forming galaxies, these must be compact themselves. We select candidate progenitors among compact Lyman-break galaxies at z~3 based on their mass, SFR and central stellar density and find that these account for a large fraction of, and possibly all, compact ETGs at z~1.6. We find that the average far-UV SED of the candidates is redder than that of the non-candidates, but the optical and mid-IR SED are the same, implying that the redder UV of the candidates is inconsistent with larger dust obscuration, and consistent with more evolved (aging) star-formation. This is in line with other evidence that compactness is a sensitive predictor of passivity among high-redshift massive galaxies. We also find that the light distribution of both the compact ETGs and their candidate progenitors does not show any extended halos surrounding the compact core, both in individual images and in stacks. We argue that this is generally inconsistent with the morphology of merger remnants, even if gas-rich, as predicted by N-body simulations. This suggests that the compact ETGs formed via highly dissipative, mostly gaseous accretion of units whose stellar components are very small and undetected in the HST images, with their stellar mass assembling in-situ, and that they have not experienced any major merging until the epoch of observations at z~1.6.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا