ﻻ يوجد ملخص باللغة العربية
By the use of cyclic symmetry, KK relations and BCJ relations, one can reduce the number of independent $N$-point color-ordered tree amplitudes in gauge theory and string theory from $N!$ to $(N-3)!$. In this paper, we investigate these relations at tree-level in both string theory and field theory. We will show that there are two primary relations. All other relations can be generated by the primary relations. In string theory, the primary relations can be chosen as cyclic symmetry as well as either the fundamental KK relation or the fundamental BCJ relation. In field theory, the primary relations can only be chosen as cyclic symmetry and the fundamental BCJ relation. We will further show a kind of more general relation which can also be generated by the primary relations. The general formula of the explicit minimal-basis expansions for color-ordered open string tree amplitudes will be given and proven in this paper.
Pair creation of strings in time-dependent backgrounds is studied from an effective field theory viewpoint, and some possible cosmological applications are discussed. Simple estimates suggest that excited strings may have played a significant role in
We use the dictionary between general field theories and strongly homotopy algebras to provide an algebraic formulation of the procedure of integrating out of degrees of freedom in terms of homotopy transfer. This includes more general effective theo
Kaluza-Klein compactifications of higher dimensional Yang-Mills theories contain a number of four dimensional scalars corresponding to the internal components of the gauge field. While at tree-level the scalar zero modes are massless, it is well know
In this paper, we analyze the inflationary cosmology using string field theory. This is done by using the zero level contribution from string field theory, which is a non-local tachyonic action. We will use the non-local Friedmann equations for this
In this note, we first explain the equivalence between the interaction Hamiltonian of Green-Schwarz light-cone gauge superstring field theory and the twist field formalism known from matrix string theory. We analyze the role of the large N limit in m