ﻻ يوجد ملخص باللغة العربية
We investigate the reconstruction problem of limited angle tomography. Such problems arise naturally in applications like digital breast tomosynthesis, dental tomography, electron microscopy etc. Since the acquired tomographic data is highly incomplete, the reconstruction problem is severely ill-posed and the traditional reconstruction methods, such as filtered backprojection (FBP), do not perform well in such situations. To stabilize the reconstruction procedure additional prior knowledge about the unknown object has to be integrated into the reconstruction process. In this work, we propose the use of the sparse regularization technique in combination with curvelets. We argue that this technique gives rise to an edge-preserving reconstruction. Moreover, we show that the dimension of the problem can be significantly reduced in the curvelet domain. To this end, we give a characterization of the kernel of limited angle Radon transform in terms of curvelets and derive a characterization of solutions obtained through curvelet sparse regularization. In numerical experiments, we will present the practical relevance of these results.
This paper considers the reconstruction problem in Acousto-Electrical Tomography, i.e., the problem of estimating a spatially varying conductivity in a bounded domain from measurements of the internal power densities resulting from different prescrib
In this paper, we consider linear ill-posed problems in Hilbert spaces and their regularization via frame decompositions, which are generalizations of the singular-value decomposition. In particular, we prove convergence for a general class of contin
Proton radiography is a widely-fielded diagnostic used to measure magnetic structures in plasma. The deflection of protons with multi-MeV kinetic energy by the magnetic fields is used to infer their path-integrated field strength. Here, the use of to
In this paper, we consider the sparse regularization of manifold-valued data with respect to an interpolatory wavelet/multiscale transform. We propose and study variational models for this task and provide results on their well-posedness. We present
Filtered backprojection (FBP) is an efficient and popular class of tomographic image reconstruction methods. In photoacoustic tomography, these algorithms are based on theoretically exact analytic inversion formulas which results in accurate reconstr