ﻻ يوجد ملخص باللغة العربية
In this paper, we present a different proof on the discrete Fourier restriction. The proof recovers Bourgains level set result on Strichartz estimates associated with Schrodinger equations on torus. Some sharp estimates on $L^{frac{2(d+2)}{d}}$ norm of certain exponential sums in higher dimensional cases are established. As an application, we show that some discrete multilinear maximal functions are bounded on $L^2(mathbb Z)$.
In this paper, we consider a discrete restriction associated with KdV equations. Some new Strichartz estimates are obtained. We also establish the local well-posedness for the periodic generalized Korteweg-de Vries equation with nonlinear term $ F(u)
A recently proposed discrete version of the Schrodinger spectral problem is considered. The whole hierarchy of differential-difference nonlinear evolution equations associated to this spectral problem is derived. It is shown that a discrete version o
We describe globally nilpotent differential operators of rank 2 defined over a number field whose monodromy group is a nonarithmetic Fuchsian group. We show that these differential operators have an S-integral solution. These differential operators a
We prove sparse bounds for the spherical maximal operator of Magyar, Stein and Wainger. The bounds are conjecturally sharp, and contain an endpoint estimate. The new method of proof is inspired by ones by Bourgain and Ionescu, is very efficient, and
Given $ -infty< lambda < Lambda < infty $, $ E subset mathbb{R}^n $ finite, and $ f : E to [lambda,Lambda] $, how can we extend $ f $ to a $ C^m(mathbb{R}^n) $ function $ F $ such that $ lambdaleq F leq Lambda $ and $ ||F||_{C^m(mathbb{R}^n)} $ is wi