ﻻ يوجد ملخص باللغة العربية
We use Lee-Suzuki mappings and related techniques to construct effective two-body p-shell interactions and neutrinoless double-beta operators that exactly reproduce the results of large no-core-shell-model calculations of double-beta decay in nuclei with mass number A=6. We then apply the effective operators to the decay of nuclei with A=7, 8, and 10, again comparing with no-core calculations in much larger spaces. The results with the effective two-body operators are generally good. In some cases, however, they differ non-negligibly from the full no-core results, suggesting that three-body corrections to the decay operator in heavier nuclei may be important. An application of our procedure and related ideas to fp-shell nuclei such as 76Ge should be feasible within coupled-cluster theory.
We present the first ab initio calculations of neutrinoless double beta decay matrix elements in $A=6$-$12$ nuclei using Variational Monte Carlo wave functions obtained from the Argonne $v_{18}$ two-nucleon potential and Illinois-7 three-nucleon inte
The nuclear matrix elements of neutrinoless double-$beta$ decay for nuclei $^{76}$Ge, $^{82}$Se, $^{100}$Mo, $^{130}$Te, and $^{150}$Nd are studied within the triaxial projected shell model, which incorporates simultaneously the triaxial deformation
We approach the calculation of the nuclear matrix element of the neutrinoless double-beta decay process, considering the light-neutrino-exchange channel, by way of the realistic shell model. To this end, we start from a realistic nucleon-nucleon pote
Neutrinoless double beta decay searches are currently among the major foci of experimental physics. The observation of such a decay will have important implications in our understanding of the intrinsic nature of neutrinos and shed light on the limit
We show that chiral effective field theory (EFT) two-body currents provide important contributions to the quenching of low-momentum-transfer Gamow-Teller transitions, and use chiral EFT to predict the momentum-transfer dependence that is probed in ne