ترغب بنشر مسار تعليمي؟ اضغط هنا

Non-Minimal Higgs Inflation and non-Thermal Leptogenesis in a Supersymmetric Pati-Salam Model

223   0   0.0 ( 0 )
 نشر من قبل C. Pallis
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider a supersymmetric (SUSY) Grand Unified Theory (GUT) based on the gauge group G_PS=SU(4)_C x SU(2)_L x SU(2)_R, which incorporates non-minimal chaotic inflation, driven by a quartic potential associated with the Higgs fields involved in the spontaneous breaking of G_PS. The inflationary model relies on renormalizable superpotetial terms and does not lead to overproduction of magnetic monopoles. It is largely independent of the one-loop radiative corrections and can become consistent with the current observational data on the inflationary observables, with the symmetry breaking scale of G_PS assuming its SUSY value. Within our model, the strong CP and the mu problems of the minimal supersymmetric standard model can be resolved via a Peccei-Quinn symmetry. Moreover baryogenesis occurs via non-thermal leptogenesis realized by the out-of-equilibrium decay of the right-handed neutrinos, which are produced by the inflatons decay. We consider t



قيم البحث

اقرأ أيضاً

149 - Stuart Raby 2017
In this talk I discuss a supersymmetric Pati-Salam model of fermion masses and mixing angles which fits low energy data. The model is then extended to include an inflationary sector which is shown to be consistent with Bicep2-Keck-Planck data. The en ergy scale during inflation is associated with the PS symmetry breaking scale. Finally, the model is shown to be consistent with the observed baryon-to-entropy ratio necessary for Big Bang Nucleosynthesis. It turns out that only the heaviest right-handed neutrino decays produce the correct sign of the baryon-to-entropy ratio. Nevertheless, we obtain the observed value due to the process of instant preheating.
130 - C. Pallis , N. Toumbas 2011
We consider a phenomenological extension of the minimal supersymmetric standard model which incorporates non-minimal chaotic inflation, driven by a quartic potential associated with the lightest right-handed sneutrino. Inflation is followed by a Pecc ei-Quinn phase transition based on renormalizable superpotential terms, which resolves the strong CP and mu problems of the minimal supersymmetric standard model provided that one related parameter of the superpotential is somewhat small. Baryogenesis occurs via non-thermal leptogenesis, which is realized by the inflaton decay. Confronting our scenario with the current observational data on the inflationary observables, the baryon assymetry of the universe, the gravitino limit on the reheating temperature and the upper bound on the light neutrino masses, we constrain the effective Yukawa coupling involved in the decay of the inflaton to relatively small values and the inflaton mass to values lower than 10^12 GeV.
178 - C. Pallis , N. Toumbas 2012
We implement the mechanism of non-thermal leptogenesis in the framework of an inflationary model based on a supersymmetric (SUSY) Pati-Salam Grand Unified Theory (GUT). In particular, we show that inflation is driven by a quartic potential associated with the Higgs fields involved in the spontaneous GUT symmetry breaking, in the presence of a non-minimal coupling of the inflaton field to gravity. The inflationary model relies on renormalizable superpotential terms and does not lead to overproduction of magnetic monopoles. It is largely independent of one-loop radiative corrections, and it can be consistent with current observational data on the inflationary observables, with the GUT symmetry breaking scale assuming its SUSY value. Non-thermal leptogenesis is realized by the out-of-equilibrium decay of the two lightest right-handed (RH) neutrinos, which are produced by the inflaton decay. Confronting our scenario with the current observational data on light neutrinos, the GUT prediction for the heaviest Dirac neutrino mass, the baryon asymmetry of the universe and the gravitino limit on the reheating temperature, we constrain the masses of the RH neutrinos in the range (10^10-10^15) GeV and the Dirac neutrino masses of the two first generations to values between 0.1 and 20 GeV.
We extend the classification of fermionic $mathbb{Z}_2timesmathbb{Z}_2$ heterotic string orbifolds to non--supersymmetric Pati--Salam (PS) models in two classes of vacua, that we dub $tilde S$--models and $S$--models. The first correspond to compacti fications of a tachyonic ten--dimensional vacuum, whereas the second correspond to compactifications of the ten--dimensional tachyon--free $SO(16)times SO(16)$ heterotic string. In both cases we develop a systematic method to extract tachyon--free four--dimensional models. We show that tachyon--free configurations arise with probability $sim0.002$ and $sim0.01$ in the first and second case, respectively. We adapt the `fertility methodology that facilitates the extraction of phenomenological models. We show that Pati--Salam $tilde S$--models do not contain heavy Higgs scalar representations that are required to break the PS symmetry to the Standard Model and are therefore not phenomenologically viable. Hence, we argue that in $tilde S$--models the $SO(10)$ GUT symmetry must be broken at the string scale to the Standard--like Model subgroup. We extract tachyon--free three generation models in both cases that contain an equal number of massless bosonic and fermionic degrees of freedom, ${it i.e.}$ with $a_{00}=N_b^0-N_f^0=0$, and analyse their one--loop partition function.
We provide what we believe is the minimal three family ${cal N} = 1$ SUSY and conformal Pati-Salam Model from type IIB superstring theory. This $Z_3$ orbifolded AdS$otimes S^5$ model has long lived protons and has potential phenomenological consequences for LHC.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا