ترغب بنشر مسار تعليمي؟ اضغط هنا

Stability conditions for Slodowy slices and real variations of stability

407   0   0.0 ( 0 )
 نشر من قبل Roman Bezrukavnikov
 تاريخ النشر 2011
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We provide examples of an explicit submanifold in Bridgeland stabilities space of a local Calabi-Yau, and propose a new variant of definition of stabilities on a triangulated category, which we call a real variation of stability conditions. We discuss its relation to Bridgelands definition; the main theorem provides an illustration of such a relation. We also state a conjecture by the second author and Okounkov relating this structure to quantum cohomology of symplectic resolutions and establish its validity in some special cases. More precisely, let X be the standard resolution of a transversal slice to an adjoint nilpotent orbit of a simple Lie algebra over C. An action of the affine braid group on the derived category of coherent sheaves on X and a collection of t-structures on this category permuted by the action have been constructed in arXiv:1101.3702 and arXiv:1001.2562 respectively. In this note we show that the t-structures come from points in a certain connected submanifold in the space of Bridgeland stability conditions. The submanifold is a covering of a submanifold in the dual space to the Grothendieck group, and the affine braid group acts by deck transformations. In the special case when dim (X)=2 a similar (in fact, stronger) result was obtained in arXiv:math/0508257.



قيم البحث

اقرأ أيضاً

82 - Jason Lo 2020
In this article, we treat stability conditions in the sense of King, Bridgeland and Bayer in a single framework. Following King, we begin with weight functions on a triangulated category, and consider increasingly specialised configurations of triang ulated categories, t-structures and stability functions that give equivalent categories of stable objects. Along the way, we recover existing results in representation theory and algebraic geometry, and prove a series of new results on elliptic surfaces, including correspondence theorems for Bridgeland stability conditions and polynomial stability conditions, local finiteness and boundedness for mini-walls for Bridgeland stability conditions, isomorphisms between moduli of 1-dimensional twisted Gieseker semistable sheaves and 2-dimensional Bridgeland semistable objects, the preservation of geometric Bridgeland stability by autoequivalences on elliptic surfaces of nonzero Kodaira dimension, and solutions to Gepner equations on elliptic surfaces.
143 - Travis Schedler 2015
The Darboux-Weinstein decomposition is a central result in the theory of Poisson (degenerate symplectic) varieties, which gives a local decomposition at a point as a product of the formal neighborhood of the symplectic leaf through the point and a fo rmal slice. Recently, conical symplectic resolutions, and more generally, Poisson cones, have been very actively studied in representation theory and algebraic geometry. This motivates asking for a C*-equivariant version of the Darboux-Weinstein decomposition. In this paper, we develop such a theory, prove basic results on their existence and uniqueness, study examples (quotient singularities and hypertoric varieties), and applications to noncommutative algebra (their quantization). We also pose some natural questions on existence and quantization of C*-actions on slices to conical symplectic leaves.
238 - Ada Boralevi 2009
Given a rational homogeneous variety G/P where G is complex simple and of type ADE, we prove that all tangent bundles T_{G/P} are simple, meaning that their only endomorphisms are scalar multiples of the identity. This result combined with Hitchin-Ko bayashi correspondence implies stability of these tangent bundles with respect to the anticanonical polarization. Our main tool is the equivalence of categories between homogeneous vector bundles on G/P and finite dimensional representations of a given quiver with relations.
76 - Yu-Wei Fan 2018
We introduce the notions of categorical systoles and categorical volumes of Bridgeland stability conditions on triangulated categories. We prove that for any projective K3 surface, there exists a constant C depending only on the rank and discriminant of its Picard group, such that $$mathrm{sys}(sigma)^2leq Ccdotmathrm{vol}(sigma)$$ holds for any stability condition on the derived category of coherent sheaves on the K3 surface. This is an algebro-geometric generalization of a classical systolic inequality on two-tori. We also discuss applications of this inequality in symplectic geometry.
In this paper, we introduce a generalization of G-opers for arbitrary parabolic subgroups P<G. For parabolic subgroups associated to even nilpotents, we parameterize (G,P)-opers by an object generalizing the base of the Hitchin fibration. In particul ar, we describe families of opers associated to higher Teichmuller spaces.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا