ترغب بنشر مسار تعليمي؟ اضغط هنا

Bacteriorhodopsin: Tunable Optical Nonlinear Magnetic Response

166   0   0.0 ( 0 )
 نشر من قبل Fabio Antonio Bovino
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report on a strong and tunable magnetic optical nonlinear response of Bacteriorhodopsin (BR) under off resonance femtosecond (fs) pulse excitation, by detecting the polarization map of the noncollinear second harmonic signal of an oriented BR film, as a function of the input beam power. BR is a light-driven proton pump with a unique photochemistry initiated by the all trans retinal chromophore embedded in the protein. An elegant application of this photonic molecular machine has been recently found in the new area of optogenetics, where genetic expression of BR in brain cells conferred a light responsivity to the cells enabling thus specific stimulation of neurons. The observed strong tunable magnetic nonlinear response of BR might trigger promising applications in the emerging area of pairing optogenetics and functional magnetic resonance imaging susceptible to provide an unprecedented complete functional mapping of neural circuits.



قيم البحث

اقرأ أيضاً

The nonlinear optical response of materials to exciting light is enhanced by resonances between the incident laser frequencies and the energy levels of the excited material. Traditionally, in molecular nonlinear spectroscopy one tunes the input laser frequencies to the molecular energy levels for highly enhanced doubly or triply resonant interactions. With metasurfaces the situation is different, and by proper design of the nanostructures, one may tune the material energy levels to match the incoming laser frequencies. Here we use multi-parameter genetic algorithm methodologies to optimize the nonlinear Four Wave Mixing response, and show that the intuitive conventional approach of trying to match the transmission spectrum to the relevant laser frequencies indeed leads to strong enhancement, but not necessarily to the optimal design. We demonstrate, experimentally and by direct nonlinear field calculations, that the near field mode distribution and spatial modes overlap are the dominant factor for optimized design.
Optical metamaterials and metasurfaces which emerged in the course of the last few decades have revolutionized our understanding of light and light-matter interaction. While solid materials are naturally employed as key building elements for construc tion of optical metamaterials mainly due to their structural stability, practically no attention was given to study of liquid-made optical 2D metasurfaces and the underlying interaction regimes between surface optical modes and liquids. In this work, we theoretically demonstrate that surface plasmon polaritons and slab waveguide modes that propagate within a thin liquid dielectric film, trigger optical self-induced interaction facilitated by surface tension effects, which lead to formation of 2D optical liquid-made lattices/metasurfaces with tunable symmetry and which can be leveraged for tuning of lasing modes. Furthermore, we show that the symmetry breaking of the 2D optical liquid lattice leads to phase transition and tuning of its topological properties which allows to form, destruct and move Dirac-points in the k-space. Our results indicate that optical liquid lattices support extremely low lasing threshold relative to solid dielectric films and have the potential to serve as configurable analogous computation platform.
We propose novel quantum antennas and metamaterials with strong magnetic response at optical frequencies. Our design is based on the arrangement of natural atoms with only electric dipole transition moments at distances smaller than a wavelength of l ight but much larger than their physical size. In particular, we show that an atomic dimer can serve as a magnetic antenna at its antisymmetric mode to enhance the decay rate of a magnetic transition in its vicinity by several orders of magnitude. Furthermore, we study metasurfaces composed of atomic bilayers with and without cavities and show that they can fully reflect the electric and magnetic fields of light, thus, forming nearly perfect electric/magnetic mirrors. The proposed quantum metamaterials can be fabricated with available state-of-the-art technologies and promise several applications both in classical optics and quantum engineering.
We introduce the concept of nonlinear graphene metasurfaces employing the controllable interaction between a graphene layer and a planar metamaterial. Such hybrid metasurfaces support two types of subradiant resonant modes, asymmetric modes of struct ured metamaterial elements (metamolecules) and graphene plasmons exhibiting strong mutual coupling and avoided dispersion crossing. High tunability of graphene plasmons facilitates strong interaction between the subradiant modes, modifying the spectral position and lifetime of the associated Fano resonances. We demonstrate that strong resonant interaction, combined with the subwavelength localization of plasmons, leads to the enhanced nonlinear response and high efficiency of the second-harmonic generation.
Materials with massless Dirac fermions can possess exceptionally strong and widely tunable optical nonlinearities. Experiments on graphene monolayer have indeed found very large third-order nonlinear responses, but the reported variation of the nonli near optical coefficient by orders of magnitude is not yet understood. A large part of the difficulty is the lack of information on how doping or chemical potential affects the different nonlinear optical processes. Here we report the first experimental study, in corroboration with theory, on third harmonic generation (THG) and four-wave mixing (FWM) in graphene that has its chemical potential tuned by ion-gel gating. THG was seen to have enhanced by ~30 times when pristine graphene was heavily doped, while difference-frequency FWM appeared just the opposite. The latter was found to have a strong divergence toward degenerate FWM in undoped graphene, leading to a giant third-order nonlinearity. These truly amazing characteristics of graphene come from the possibility to gate-control the chemical potential, which selectively switches on and off one- and multi-photon resonant transitions that coherently contribute to the optical nonlinearity, and therefore can be utilized to develop graphene-based nonlinear optoelectronic devices.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا