ترغب بنشر مسار تعليمي؟ اضغط هنا

A Distorted MSSM Higgs Sector from Low-Scale Strong Dynamics

146   0   0.0 ( 0 )
 نشر من قبل Tony Gherghetta
 تاريخ النشر 2011
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We show that when supersymmetry is broken at the TeV scale by strong dynamics, the Higgs sector of the MSSM can be drastically modified. This arises from possible sizeable mixings of the Higgs with the resonances of the strong sector. In particular the mass of the lightest Higgs boson can be significantly above the MSSM bound (~130 GeV). Furthermore only one Higgs doublet is strictly necessary, because the Yukawa couplings can have a very different structure compared to the MSSM. Using the AdS/CFT correspondence electroweak precision observables can be calculated and shown to be below experimental bounds. The most natural way to generate sparticle masses is through mixing with the composite states. This causes the gauginos and Higgsinos to easily obtain Dirac masses around 200 GeV, while scalar masses can be generated either from extra D-terms or also through mixing with the strongly-coupled states. Finally one of the most interesting predictions of these scenarios is the sizeable decay width of the Higgs boson into a very light gravitino (~ 10^{-4} eV) and a Higgsino.



قيم البحث

اقرأ أيضاً

81 - Henning Bahl 2019
Different approaches are used for the calculation of the SM-like Higgs boson mass in the MSSM: the fixed-order diagrammatic approach is accurate for low SUSY scales; the EFT approach,for high SUSY scales. Hybrid approaches, combining fixed-order and EFT calculations, allow to obtain a precise prediction also for intermediary SUSY scales. Here, we briefly discuss the hybrid approach implemented into the code FeynHiggs. In addition, we show how the refined Higgs mass prediction was used to define new MSSM Higgs benchmark scenarios.
142 - Zygmunt Lalak 2012
We investigate basic consequences of the assumption that the mass scale of the perturbative sector responsible for the spontaneous symmetry breaking is generated dynamically in a theory with a large UV scale. It is assumed that in addition to an elem entary scalar there exists an additional scalar, a modulus, which controls the dynamical hierarchy of scales in the manner similar to that of supersymmetric gaugino condensation. It is shown that a light degree of freedom appears that couples to the gauge bosons and to charged fermions in a specific way which is different from the couplings of the dilaton of the exact scale invariance.
ATLAS and CMS collaborations have reported the results on the Higgs search analyzing $sim 36$ fb$^{-1}$ data from Run-II of LHC at 13 TeV. In this work, we study the Higgs sector of the phenomenological Minimal Supersymmetric Standard Model, in light of the recent Higgs data, by studying separately the impact of Run-I and Run-II data. One of the major impacts of the new data on the parameter space comes from the direct searches of neutral CP-even and CP-odd heavy Higgses ($H$ and $A$, respectively) in the $H/A to tau^{+} tau^{-}$ channel which disfavours high $tanbeta$ regions more efficiently than Run-I data. Secondly, we show that the latest result of the rare radiative decay of $B$ meson imposes a slightly stronger constraint on low $tan beta$ and low $M_A$ region of the parameter space, as compared to its previous measurement. Further, we find that in a global fit Run-II light Higgs signal strength data is almost comparable in strength with the corresponding Run-I data. Finally, we discuss scenarios with the Heavy Higgs boson decaying into electroweakinos and third generation squarks and sleptons.
In MSSM models with various boundary conditions for the soft breaking terms (m_{soft}) and for a higgs mass of 126 GeV, there is a (minimal) electroweak fine-tuning Deltaapprox 800 to 1000 for the constrained MSSM and Deltaapprox 500 for non-universa l gaugino masses. These values, often regarded as unacceptably large, may indicate a problem of supersymmetry (SUSY) breaking, rather than of SUSY itself. A minimal modification of these models is to lower the SUSY breaking scale in the hidden sector (sqrt f) to few TeV, which we show to restore naturalness to more acceptable levels Deltaapprox 80 for the most conservative case of low tan_beta and ultraviolet boundary conditions as in the constrained MSSM. This is done without introducing additional fields in the visible sector, unlike other models that attempt to reduce Delta. In the present case Delta is reduced due to additional (effective) quartic higgs couplings proportional to the ratio m_{soft}/(sqrt f) of the visible to the hidden sector SUSY breaking scales. These couplings are generated by the auxiliary component of the goldstino superfield. The model is discussed in the limit its sgoldstino component is integrated out so this superfield is realized non-linearly (hence the name of the model) while the other MSSM superfields are in their linear realization. By increasing the hidden sector scale sqrt f one obtains a continuous transition for fine-tuning values, from this model to the usual (gravity mediated) MSSM-like models.
We consider the extension of the Standard Model (SM) with a strongly interacting QCD-like hidden sector, at least two generations of right-handed neutrinos and one scalar singlet. Once scalar singlet obtains a nonzero vacuum expectation value, active neutrino masses are generated through type-I seesaw mechanism. Simultaneously, the electroweak scale is generated through the radiative corrections involving these massive fermions. This is the essence of the scenario that is known as the neutrino option for which the successful masses of right-handed neutrinos are in the range $10^7-10^8$ GeV. The main goal of this work is to scrutinize the potential to accommodate dark matter in such a realization. The dark matter candidates are Nambu-Goldstone bosons which appear due to the dynamical breaking of the hidden chiral symmetry. The mass spectrum studied in this work is such that masses of Nambu-Goldstone bosons and singlet scalar exceed those of right-handed neutrinos. Having the masses of all relevant particles several orders of magnitude above $mathcal{O}$(TeV), the freeze-out of dark matter is not achievable and hence we turn to alternative scenarios, namely freeze-in. The Nambu-Goldstone bosons can interact with particles that are not in SM but, however, have non-negligible abundance through their not-too-small couplings with SM. Utilizing this, we demonstrate that the dark matter in the model is successfully produced at temperature scale where the right-handed neutrinos are still stable. We note that the lepton number asymmetry sufficient for the generation of observable baryon asymmetry of the Universe can be produced in right-handed neutrino decays. Hence, we infer that the model has the potential to simultaneously address several of the most relevant puzzles in contemporary high-energy physics.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا