ﻻ يوجد ملخص باللغة العربية
The NO cycle takes place in the deepest layer of a H-burning core or shell, when the temperature exceeds T {simeq} 30 {cdot} 106 K. The O depletion observed in some globular cluster giant stars, always associated with a Na enhancement, may be due to either a deep mixing during the RGB (red giant branch) phase of the star or to the pollution of the primordial gas by an early population of massive AGB (asymptotic giant branch) stars, whose chemical composition was modified by the hot bottom burning. In both cases, the NO cycle is responsible for the O depletion. The activation of this cycle depends on the rate of the 15N(p,{gamma})16O reaction. A precise evaluation of this reaction rate at temperatures as low as experienced in H-burning zones in stellar interiors is mandatory to understand the observed O abundances. We present a new measurement of the 15N(p,{gamma})16O reaction performed at LUNA covering for the first time the center of mass energy range 70-370 keV, which corresponds to stellar temperatures between 65 {cdot} 106 K and 780 {cdot}106 K. This range includes the 15N(p,{gamma})16O Gamow-peak energy of explosive H-burning taking place in the external layer of a nova and the one of the hot bottom burning (HBB) nucleosynthesis occurring in massive AGB stars. With the present data, we are also able to confirm the result of the previous R-matrix extrapolation. In particular, in the temperature range of astrophysical interest, the new rate is about a factor of 2 smaller than reported in the widely adopted compilation of reaction rates (NACRE or CF88) and the uncertainty is now reduced down to the 10% level.
The 18O(p,alpha)15N reaction rate has been extracted by means of the Trojan-Horse method. For the first time the contribution of the 20-keV peak has been directly evaluated, giving a value about 35% larger than previously estimated. The present appro
The 16O(p,gamma)17F reaction rate is revisited with special emphasis on the stellar temperature range of T=60-100 MK important for hot bottom burning in asymptotic giant branch (AGB) stars. We evaluate existing cross section data that were obtained s
Big bang nucleosynthesis (BBN) is the standard model theory for the production of the light nuclides during the early stages of the universe, taking place for a period of about 20 minutes after the big bang. Deuterium production, in particular, is hi
We present a new measurement of the $alpha$-spectroscopic factor ($S_alpha$) and the asymptotic normalization coefficient (ANC) for the 6.356 MeV 1/2$^+$ subthreshold state of $^{17}$O through the $^{13}$C($^{11}$B, $^{7}$Li)$^{17}$O transfer reactio
The thermonuclear $^{19}$F($p$,$alpha_0$)$^{16}$O reaction rate in a temperature region of 0.007--10 GK has been derived by re-evaluating the available experimental data, together with the low-energy theoretical $R$-matrix extrapolations. Our new rat