ترغب بنشر مسار تعليمي؟ اضغط هنا

Venus transit 2004: Illustrating the capability of exoplanet transmission spectroscopy

110   0   0.0 ( 0 )
 نشر من قبل Pascal Hedelt
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The transit of Venus in 2004 offered the rare possibility to remotely sense a well-known planetary atmosphere using ground-based observations for absorption spectroscopy. Transmission spectra of Venus atmosphere were obtained in the near infrared using the Vacuum Tower Telescope (VTT) in Tenerife. Since the instrument was designed to measure the very bright photosphere of the Sun, extracting Venus atmosphere was challenging. CO_2 absorption lines could be identified in the upper Venus atmosphere. Moreover, the relative abundance of the three most abundant CO_2 isotopologues could be determined. The observations resolved Venus limb, showing Doppler-shifted absorption lines that are probably caused by high-altitude winds. This paper illustrates the ability of ground-based measurements to examine atmospheric constituents of a terrestrial planet atmosphere which might be applied in future to terrestrial extrasolar planets.



قيم البحث

اقرأ أيضاً

KMOS (K-Band Multi Object Spectrograph) is a novel integral field spectrograph installed in the VLTs ANTU unit. The instrument offers an ability to observe 24 2.8$times$2.8 sub-fields positionable within a 7.2 patrol field, each sub-field producing a spectrum with a 14$times$14-pixel spatial resolution. The main science drivers for KMOS are the study of galaxies, star formation, and molecular clouds, but its ability to simultaneously measure spectra of multiple stars makes KMOS an interesting instrument for exoplanet atmosphere characterization via transmission spectroscopy. We set to test whether transmission spectroscopy is practical with KMOS, and what are the conditions required to achieve the photometric precision needed, based on observations of a partial transit of WASP-19b, and full transits of GJ 1214b and HD 209458b. Our analysis uses the simultaneously observed comparison stars to reduce the effects from instrumental and atmospheric sources, and Gaussian processes to model the residual systematics. We show that KMOS can, in theory, deliver the photometric precision required for transmission spectroscopy. However, this is shown to require a) pre-imaging to ensure accurate centering and b) a very stable night with optimal observing conditions (seeing $sim$0.8). Combining these two factors with the need to observe several transits, each with a sufficient out-of-transit baseline (and with the fact that similar or better precision can be reached with telescopes and instruments with smaller pressure,) we conclude that transmission spectroscopy is not the optimal science case to take advantage of the abilities offered by KMOS and VLT.
Transmission spectroscopy is a promising tool for the atmospheric characterization of transiting exoplanets. Because the planetary signal is faint, discrepancies have been reported regarding individual targets. We investigate the dependence of the es timated transmission spectrum on deviations of the orbital parameters of the star-planet system that are due to the limb-darkening effects of the host star. We describe how the uncertainty on the orbital parameters translates into an uncertainty on the planetary spectral slope. We created synthetic transit light curves in seven different wavelength bands, from the near-ultraviolet to the near-infrared, and fit them with transit models parameterized by fixed deviating values of the impact parameter $b$. Our simulations show a wavelength-dependent offset that is more pronounced at the blue wavelengths where the limb-darkening effect is stronger. This offset introduces a slope in the planetary transmission spectrum that becomes steeper with increasing $b$ values. Variations of $b$ by positive or negative values within its uncertainty interval introduce positive or negative slopes, thus the formation of an error envelope. The amplitude from blue optical to near-infrared wavelength for a typical uncertainty on $b$ corresponds to one atmospheric pressure scale height and more. This impact parameter degeneracy is confirmed for different host types; K stars present prominently steeper slopes, while M stars indicate features at the blue wavelengths. We demonstrate that transmission spectra can be hard to interpret, basically because of the limitations in defining a precise impact parameter value for a transiting exoplanet. This consequently limits a characterization of its atmosphere.
On 5-6 June 2012, Venus will be transiting the Sun for the last time before 2117. This event is an unique opportunity to assess the feasibility of the atmospheric characterisation of Earth-size exoplanets near the habitable zone with the transmission spectroscopy technique and provide an invaluable proxy for the atmosphere of such a planet. In this letter, we provide a theoretical transmission spectrum of the atmosphere of Venus that could be tested with spectroscopic observations during the 2012 transit. This is done using radiative transfer across Venus atmosphere, with inputs from in-situ missions such as Venus Express and theoretical models. The transmission spectrum covers a range of 0.1-5 {mu}m and probes the limb between 70 and 150 km in altitude. It is dominated in UV by carbon dioxide absorption producing a broad transit signal of ~20 ppm as seen from Earth, and from 0.2 to 2.7 {mu}m by Mie extinction (~5 ppm at 0.8 {mu}m) caused by droplets of sulfuric acid composing an upper haze layer above the main deck of clouds. These features are not expected for a terrestrial exoplanet and could help discriminating an Earth-like habitable world from a cytherean planet.
We obtained long-slit optical spectroscopy of one transit of WASP-48b with the Optical System for Imaging and low-Intermediate-Resolution Integrated Spectroscopy (OSIRIS) spectrograph at the 10.4 m Gran Telescopio Canarias (GTC). We integrated the sp ectrum of WASP-48 and one reference star in several channels with different wavelength ranges, creating numerous color light curves of the transit. We fit analytic transit curves to the data taking into account the systematic effects present in the time series in an effort to measure the change of the planet-to-star radius ratio ($R_p/R_s$) across wavelength. After removing the transit model and systematic trends to the curves we reached precisions between 261 ppm and 455-755 ppm for the white and spectroscopic light curves, respectively. We obtained $R_p/R_s$ uncertainty values between $0.8 times 10^{-3}$ and $1.5times 10^{-3}$ for all the curves analyzed in this work. The measured transit depth for the curves made by integrating the wavelength range between 530 nm and 905 nm is in agreement with previous studies. We report a relatively flat transmission spectrum for WASP-48b with no statistical significant detection of atmospheric species, although the theoretical models that fit the data more closely include of TiO and VO.
We used GTC instrument OSIRIS to obtain long-slit spectra in the optical range (520-1040 nm) of the planetary host star WASP-43 (and a reference star) during a full primary transit event and four partial transit observations. We integrated the stella r flux of both stars in different wavelength regions producing several light curves. We fitted transit models to these curves to measure the star-to-planet radius ratio, Rp/Rs, across wavelength among other physical parameters. We measure a Rp/Rs in the white light curve of 0.15988^{+0.00133}_{-0.00145}. We present a tentative detection of an excess in the planet-to-star radius ratio around the Na I doublet (588.9 nm, 589.5 nm) when compared to the nearby continuum at the 2.9-sigma level. We find no significant excess of the measured planet-to-star radius ratio around the K I doublet (766.5 nm, 769.9 nm) when compared to the nearby continuum. Combining our observations with previous published epochs, we refine the estimation of the orbital period. Using a linear ephemeris, we obtained a period of P=0.81347385 +/- 1.5 x 10^{-7} days. Using a quadratic ephemeris, we obtained a period of 0.81347688 +/- 8.6 x 10^{-7} days, and a change in this parameter of dP/dt = -0.15 +/- 0.06 sec/year. As previous results, this hints to the orbital decay of this planet although a timing analysis over several years needs to be made in order to confirm this.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا