ترغب بنشر مسار تعليمي؟ اضغط هنا

Explaining radio emission of magnetars via rotating and oscillating magnetospheres of neutron stars

193   0   0.0 ( 0 )
 نشر من قبل Zanotti Olindo Dr.
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate the conditions for radio emission in rotating and oscillating magnetars, by focusing on the main physical processes determining the position of their death-lines in the P-dot{P} diagram, i.e. of those lines that separate the regions where the neutron star may be radio-loud or radio-quiet. After using the general relativistic expression for the electromagnetic scalar potential in the magnetar magnetosphere, we find that larger compactness parameters of the star as well as larger inclination angles between the rotation axis and the magnetic moment produce death-lines well above the majority of known magnetars. This is consistent with the observational evidence of no regular radio emission from the magnetars in the frequency range typical for the ordinary pulsars. On the contrary, when oscillations of the magnetar are taken into account, the death-lines shift downward and the conditions necessary for the generation of radio emission in the magnetosphere are met. Present observations showing a close connection between the burst activity of magnetars and the generation of the radio emission in the magnetar magnetosphere are naturally accounted for within our interpretation.



قيم البحث

اقرأ أيضاً

We study the magnetosphere of a slowly rotating magnetized neutron star subject to toroidal oscillations in the relativistic regime. Under the assumption of a zero inclination angle between the magnetic moment and the angular momentum of the star, we analyze the Goldreich-Julian charge density and derive a second-order differential equation for the electrostatic potential. The analytical solution of this equation in the polar cap region of the magnetosphere shows the modification induced by stellar toroidal oscillations on the accelerating electric field and on the charge density. We also find that, after decomposing the oscillation velocity in terms of spherical harmonics, the first few modes with $m=0,1$ are responsible for energy losses that are almost linearly dependent on the amplitude of the oscillation and that, for the mode $(l,m)=(2,1)$, can be a factor $sim8$ larger than the rotational energy losses, even for a velocity oscillation amplitude at the star surface as small as $eta=0.05 Omega R$. The results obtained in this paper clarify the extent to which stellar oscillations are reflected in the time variation of the physical properties at the surface of the rotating neutron star, mainly by showing the existence of a relation between $Pdot{P}$ and the oscillation amplitude. Finally, we propose a qualitative model for the explanation of the phenomenology of intermittent pulsars in terms of stellar oscillations that are periodically excited by star glitches.
145 - Arkadip Basak 2017
Viscosity driven bar mode secular instabilities of rapidly rotating neutron stars are studied using LORENE/Nrotstar code. These instabilities set a more rigorous limit to the rotation frequency of neutron star than the Kepler frequency/mass shedding limit. The procedure employed in the code comprises of perturbing an axisymmetric and stationary configuration of a neutron star and studying its evolution by constructing a series of triaxial quasi-equilibrium configurations. Symmetry breaking point was found out for Polytropic as well as 10 realistic Equations of states (EOS) from the CompOSE database. The concept of piecewise polytropic EOSs has been used to comprehend the rotational instability of Realistic EOSs and validated with 19 different Realistic EOSs from CompOSE. The possibility of detecting quasi-periodic gravitational waves from viscosity driven instability with ground based LIGO/VIRGO interferometers is also discussed very briefly.
Magnetars are the most luminous compact objects in the stellar mass range observed in the Milky Way, with giant flares of hard X-ray power ~10^45 erg/sec being detected from three soft gamma repeaters in the Galactic neighborhood. Periodicity seen in magnetar persistent emission, and a distinctive spin-down lengthening of this period, have driven the paradigm that strongly-magnetized neutron stars constitute these fascinating sources. The steady X-ray emission includes both thermal atmospheric components, and magnetospheric contributions that are manifested as hard X-ray tails. This paper addresses observational and theoretical elements pertinent to the steady hard X-ray emission of magnetars, focusing on dissipative processes in their magnetospheres, and elements of Comptonization and polarization. It also discusses the action and possible signatures of the exotic and fundamental QED mechanisms of photon splitting and magnetic pair creation, and the quest for their observational vindication.
The Neutron star Interior Composition Explorer (NICER) is currently observing the x-ray pulse profiles emitted by hot spots on the surface of rotating neutron stars allowing for an inference of their radii with unprecedented precision. A critical ing redient in the pulse profile model is an analytical formula for the oblate shape of the star. These formulas require a fitting over a large ensemble of neutron star solutions, which cover a wide set of equations of state, stellar compactnesses and rotational frequencies. However, this procedure introduces a source of systematic error, as (i) the fits do not describe perfectly the surface of all stars in the ensemble and (ii) neutron stars are described by a single equation of state, whose influence on the surface shape is averaged out during the fitting procedure. Here we perform a first study of this systematic error, finding evidence that it is subdominant relative to the statistical error in the radius inference by NICER. We also find evidence that the formula currently used by NICER can be used in the inference of the radii of rapidly rotating stars, outside of the formulas domain of validity. Moreover, we employ an accurate enthalpy-based method to locate the surface of numerical solutions of rapidly rotating neutron stars and a new highly accurate formula to describe their surfaces. These results can be used in applications that require an accurate description of oblate surfaces of rapidly rotating neutron stars.
We study non-geodesic corrections to the quasicircular motion of charged test particles in the field of magnetized slowly rotating neutron stars. The gravitational field is approximated by the Lense-Thirring geometry, the magnetic field is of the sta ndard dipole character. Using a fully-relativistic approach we determine influence of the electromagnetic interaction (both attractive and repulsive) on the quasicircular motion. We focus on the behaviour of the orbital and epicyclic frequencies of the motion. Components of the four-velocity of the orbiting charged test particles are obtained by numerical solution of equations of motion, the epicyclic frequencies are obtained by using the standard perturbative method. The role of the combined effect of the neutron star magnetic field and its rotation in the character of the orbital and epicyclic frequencies is discussed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا