ترغب بنشر مسار تعليمي؟ اضغط هنا

Revealing the dual nature of magnetism in iron pnictides and iron chalcogenides using x-ray emission spectroscopy

193   0   0.0 ( 0 )
 نشر من قبل Young-June Kim
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report Fe K beta x-ray emission spectroscopy study of local magnetic moments in various iron based superconductors in their paramagnetic phases. Local magnetic moments are found in all samples studied: PrFeAsO, Ba(Fe,Co)2As2, LiFeAs, Fe1+x(Te,Se), and A2Fe4Se5 (A=K, Rb, and Cs). The moment size varies significantly across different families. Specifically, all iron pnictides samples have local moments of about 1 $mu_B$/Fe, while FeTe and K2Fe4Se5 families have much larger local moments of ~2$mu_B$/Fe, ~3.3$mu_B$/Fe, respectively. In addition, we find that neither carrier doping nor temperature change affects the local moment size.



قيم البحث

اقرأ أيضاً

Within the framework of density functional theory we investigate the nature of magnetism in various families of Fe-based superconductors. (i) We show that magnetization of stripe-type antiferromagnetic order always becomes stronger when As is substit uted by Sb in LaOFeAs, BaFe$_2$As$_2$ and LiFeAs. By calculating Pauli susceptibilities, we attribute the magnetization increase obtained after replacing As by Sb to the enhancement of an instability at $(pi,pi)$. This points to a strong connection between Fermi surface nesting and magnetism, which supports the theory of the itinerant nature of magnetism in various families of Fe-based superconductors. (ii) We find that within the family LaOFe$Pn$ ($Pn$=P, As, Sb, Bi) the absence of an antiferromagnetic phase in LaOFeP and its presence in LaOFeAs can be attributed to the competition of instabilities in the Pauli susceptibility at $(pi,pi)$ and $(0,0)$, which further strengthens the close relation between Fermi surface nesting and experimentally observed magnetization. (iii) Finally, based on our relaxed structures and Pauli susceptibility results, we predict that LaOFeSb upon doping or application of pressure should be a candidate for a superconductor with the highest transition temperature among the hypothetical compounds LaOFeSb, LaOFeBi, ScOFeP and ScOFeAs while the parent compounds LaOFeSb and LaOFeBi should show at ambient pressure a stripe-type antiferromagnetic metallic state.
X-ray emission and absorption spectroscopies are jointly used as fast probes to determine the evolution as a function of doping of the fluctuating local magnetic moments in K- and Cr- hole-doped BaFe2As2. An increase in the local moment with hole-dop ing is found, supporting the theoretical scenario in which a Mott insulating state that would be realized for half-filled conduction bands has an influence throughout the phase diagram of these iron-pnictides.
140 - D. Hsieh , Y. Xia , L. Wray 2008
Like high Tc cuprates, the newly discovered iron based superconductors lie in close proximity to a magnetically ordered parent phase. However, while the magnetic order in parent cuprates is known to derive from a spin-spin local superexchange interac tion, a plethora of experiments including neutron scattering have so far been unable to conclusively resolve whether a local moment Heisenberg description applies in parent iron based compounds, or whether magnetism arises from a collective SDW order instability. These two alternatives can in principle be distinguished by measuring the low energy momentum-resolved bulk-representative electronic structure of the magnetically ordered phase. Using a combination of polarization dependent ARPES and STM, we have isolated the complete low-lying bulk representative electronic structure of magnetic SrFe2As2 with d-orbital symmetry specificity for the first time. Our results show that while multiple bands with different iron d-orbital character indeed contribute to charge transport, only one pair of bands with opposite mirror symmetries microscopically exhibit an itinerant SDW instability with energy scales on the order of 50 meV. The orbital resolved band topology below T_SDW point uniquely to a nesting driven band hybridization mechanism of the observed antiferromagnetism in the iron pnictides, and is consistent with an unusual anisotropic nodal-density-wave state. In addition, these results place strong constraints on many theories of pnictide superconductivity that require a strict local moment magnetism starting point.
A growing list of experiments show orthorhombic electronic anisotropy in the iron pnictides, in some cases at temperatures well above the spin density wave transition. These experiments include neutron scattering, resistivity and magnetoresistance me asurements, and a variety of spectroscopies. We explore the idea that these anisotropies stem from a common underlying cause: orbital order manifest in an unequal occupation of $d_{xz}$ and $d_{yz}$ orbitals, arising from the coupled spin-orbital degrees of freedom. We emphasize the distinction between the total orbital occupation (the integrated density of states), where the order parameter may be small, and the orbital polarization near the Fermi level which can be more pronounced. We also discuss light-polarization studies of angle-resolved photoemission, and demonstrate how x-ray absorption linear dichroism may be used as a method to detect an orbital order parameter.
Deviations of low-energy electronic structure of iron-based superconductors from density functional theory predictions have been parametrized in terms of band- and orbital-dependent mass renormalizations and energy shifts. The former have typically b een described in terms of a local self-energy within the framework of dynamical mean field theory, while the latter appears to require non-local effects due to interband scattering. By calculating the renormalized bandstructure in both random phase approximation (RPA) and the two-particle self-consistent approximation (TPSC), we show that correlations in pnictide systems like LaFeAsO and LiFeAs can be described rather well by a non-local self-energy. In particular, Fermi pocket shrinkage as seen in experiment occurs due to repulsive interband finite-energy scattering. For the canonical iron chalcogenide system FeSe in its bulk tetragonal phase, the situation is however more complex since even including momentum-dependent band renormalizations cannot explain experimental findings. We propose that the long-range Coulomb interaction may play an important role in band-structure renormalization in FeSe. We further compare our evaluations of non-local quasiparticle scattering lifetime within RPA and TPSC with experimental data for LiFeAs.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا