ﻻ يوجد ملخص باللغة العربية
Motivated by a hat guessing problem proposed by Iwasawa cite{Iwasawa10}, Butler and Graham cite{Butler11} made the following conjecture on the existence of certain way of marking the {em coordinate lines} in $[k]^n$: there exists a way to mark one point on each {em coordinate line} in $[k]^n$, so that every point in $[k]^n$ is marked exactly $a$ or $b$ times as long as the parameters $(a,b,n,k)$ satisfies that there are non-negative integers $s$ and $t$ such that $s+t = k^n$ and $as+bt = nk^{n-1}$. In this paper we prove this conjecture for any prime number $k$. Moreover, we prove the conjecture for the case when $a=0$ for general $k$.
We prove that for any $varepsilon>0$, for any large enough $t$, there is a graph $G$ that admits no $K_t$-minor but admits a $(frac32-varepsilon)t$-colouring that is frozen with respect to Kempe changes, i.e. any two colour classes induce a connected
Let $(E,V)$ be a general generated coherent system of type $(n,d,n+m)$ on a general non-singular irreducible complex projective curve. A conjecture of D. C. Butler relates the semistability of $E$ to the semistability of the kernel of the evaluation
We prove a conjecture of Ohba which says that every graph $G$ on at most $2chi(G)+1$ vertices satisfies $chi_ell(G)=chi(G)$.
Tuza (1981) conjectured that the size $tau(G)$ of a minimum set of edges that intersects every triangle of a graph $G$ is at most twice the size $ u(G)$ of a maximum set of edge-disjoint triangles of $G$. In this paper we present three results regard
We consider three graphs, $G_{7,3}$, $G_{7,4}$, and $G_{7,6}$, related to Kellers conjecture in dimension 7. The conjecture is false for this dimension if and only if at least one of the graphs contains a clique of size $2^7 = 128$. We present an aut