ترغب بنشر مسار تعليمي؟ اضغط هنا

Kinetic Theory and the Kac Master Equation

321   0   0.0 ( 0 )
 نشر من قبل Michael Loss
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

This article reviews recent work on the Kac master equation and its low dimensional counterpart, the Kac equation.



قيم البحث

اقرأ أيضاً

151 - Keith A. Earle 2011
A derivation of the Dirac equation in `3+1 dimensions is presented based on a master equation approach originally developed for the `1+1 problem by McKeon and Ord. The method of derivation presented here suggests a mechanism by which the work of Knut h and Bahrenyi on causal sets may be extended to a derivation of the Dirac equation in the context of an inference problem.
Presentation of the probability as an intrinsic property of the nature leads researchers to switch from deterministic to stochastic description of the phenomena. The procedure of stochastization of one-step process was formulated. It allows to write down the master equation based on the type of of the kinetic equations and assumptions about the nature of the process. The kinetics of the interaction has recently attracted attention because it often occurs in the physical, chemical, technical, biological, environmental, economic, and sociological systems. However, there are no general methods for the direct study of this equation. Leaving in the expansion terms up to the second order we can get the Fokker-Planck equation, and thus the Langevin equation. It should be clearly understood that these equations are approximate recording of the master equation. However, this does not eliminate the need for the study of the master equation. Moreover, the power series produced during the master equation decomposition may be divergent (for example, in spatial models). This makes it impossible to apply the classical perturbation theory. It is proposed to use quantum field perturbation theory for the statistical systems (the so-called Doi method). This work is a methodological material that describes the principles of master equation solution based on quantum field perturbation theory methods. The characteristic property of the work is that it is intelligible for non-specialists in quantum field theory. As an example the Verhulst model is used because of its simplicity and clarity (the first order equation is independent of the spatial variables, however, contains non-linearity). We show the full equivalence of the operator and combinatorial methods of obtaining and study of the one-step process master equation.
169 - Dustin Keys , Jan Wehr 2019
The paper studies a class of quantum stochastic differential equations, modeling an interaction of a system with its environment in the quantum noise approximation. The space representing quantum noise is the symmetric Fock space over L^2(R_+). Using the isomorphism of this space with the space of square-integrable functionals of the Poisson process, the equations can be represented as classical stochastic differential equations, driven by Poisson processes. This leads to a discontinuous dynamical state reduction which we compare to the Ghirardi-Rimini-Weber model. A purely quantum object, the norm process, is found which plays the role of an observer (in the sense of Everett [H. Everett III, Reviews of modern physics, 29.3, 454, (1957)]), encoding all events occurring in the system space. An algorithm introduced by Dalibard et al [J. Dalibard, Y. Castin, and K. M{o}lmer, Physical review letters, 68.5, 580 (1992)] to numerically solve quantum master equations is interpreted in the context of unravellings and the trajectories of expected values of system observables are calculated.
We consider solutions to the Kac master equation for initial conditions where $N$ particles are in a thermal equilibrium and $Mle N$ particles are out of equilibrium. We show that such solutions have exponential decay in entropy relative to the therm al state. More precisely, the decay is exponential in time with an explicit rate that is essentially independent on the particle number. This is in marked contrast to previous results which show that the entropy production for arbitrary initial conditions is inversely proportional to the particle number. The proof relies on Nelsons hypercontractive estimate and the geometric form of the Brascamp-Lieb inequalities due to Franck Barthe. Similar results hold for the Kac-Boltzmann equation with uniform scattering cross sections.
We consider the model of a quantum harmonic oscillator governed by a Lindblad master equation where the typical drive and loss channels are multi-photon processes instead of single-photon ones; this implies a dissipation operator of order 2k with int eger k>1 for a k-photon process. We prove that the corresponding PDE makes the state converge, for large time, to an invariant subspace spanned by a set of k selected basis vectors; the latter physically correspond to so-called coherent states with the same amplitude and uniformly distributed phases. We also show that this convergence features a finite set of bounded invariant functionals of the state (physical observables), such that the final state in the invariant subspace can be directly predicted from the initial state. The proof includes the full arguments towards the well-posedness of the corresponding dynamics in proper Banach spaces of Hermitian trace-class operators equipped with adapted nuclear norms. It relies on the Hille-Yosida theorem and Lyapunov convergence analysis.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا