ﻻ يوجد ملخص باللغة العربية
For nearly any challenging scientific problem evaluation of the likelihood is problematic if not impossible. Approximate Bayesian computation (ABC) allows us to employ the whole Bayesian formalism to problems where we can use simulations from a model, but cannot evaluate the likelihood directly. When summary statistics of real and simulated data are compared --- rather than the data directly --- information is lost, unless the summary statistics are sufficient. Here we employ an information-theoretical framework that can be used to construct (approximately) sufficient statistics by combining different statistics until the loss of information is minimized. Such sufficient sets of statistics are constructed for both parameter estimation and model selection problems. We apply our approach to a range of illustrative and real-world model selection problems.
In this tutorial we schematically illustrate four algorithms: (1) ABC rejection for parameter estimation (2) ABC SMC for parameter estimation (3) ABC rejection for model selection on the joint space (4) ABC SMC for model selection on the joint space.
This paper is due to appear as a chapter of the forthcoming Handbook of Approximate Bayesian Computation (ABC) by S. Sisson, L. Fan, and M. Beaumont. We describe the challenge of calibrating climate simulators, and discuss the differences in emphasis
We compare two major approaches to variable selection in clustering: model selection and regularization. Based on previous results, we select the method of Maugis et al. (2009b), which modified the method of Raftery and Dean (2006), as a current stat
Approximate Bayesian computation (ABC) or likelihood-free inference algorithms are used to find approximations to posterior distributions without making explicit use of the likelihood function, depending instead on simulation of sample data sets from
This is an up-to-date introduction to, and overview of, marginal likelihood computation for model selection and hypothesis testing. Computing normalizing constants of probability models (or ratio of constants) is a fundamental issue in many applicati