ترغب بنشر مسار تعليمي؟ اضغط هنا

Precision measurement of the ratio B(t -> Wb)/B(t -> Wq)

160   0   0.0 ( 0 )
 نشر من قبل C\\'ecile Deterre
 تاريخ النشر 2011
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a measurement of the ratio of top quark branching fractions R = B(t -> Wb)/B(t -> Wq), where q can be a d, s or b quark, in the lepton+jets and dilepton ttbar final states. The measurement uses data from 5.4 fb-1 of ppbar collisions collected with the D0 detector at the Fermilab Tevatron Collider. We measure R = 0.90 +/- 0.04, and we extract the CKM matrix element |Vtb| as |Vtb| = 0.95 +/- 0.02, assuming unitarity of the 3x3 CKM matrix.



قيم البحث

اقرأ أيضاً

We present a measurement of the ratio of the top-quark branching fractions $R=mathcal{B}(trightarrow Wb)/mathcal{B}(trightarrow $ $q$ represents quarks of flavors $b$, $s$, or $d$, in the final state, in events with two charged leptons, missing trans verse energy and at least two jets. The measurement uses $sqrt{s}$ = 1.96 TeV proton--antiproton collision data corresponding to an integrated luminosity of 8.7 fb$^{-1}$ and collected with the Collider Detector at Fermilab during Run II of the Tevatron. We measure $R=0.87 pm 0.07$ (stat+syst), and extract the magnitude of the Cabibbo-Kobayashi-Maskawa matrix element, $left|V_{tb}right| = 0.93 pm 0.04$ (stat+syst) assuming three generations of quarks. Under these assumptions, a lower limit of $|V_{tb}|>0.85$ at 95% credibility level is set.
We report on a precision measurement of the ratio ${cal R}_{taumu}^{Upsilon(3S)} = {cal B}(Upsilon(3S)totau^+tau^-)/{cal B}(Upsilon(3S)tomu^+mu^-)$ using data collected with the BaBar detector at the SLAC PEP-II $e^+e^-$ collider. The measurement is based on a 28 fb$^{-1}$ data sample collected at a center-of-mass energy of 10.355 GeV corresponding to a sample of 122 million $Upsilon(3S)$ mesons. The ratio is measured to be ${cal R}_{taumu}^{Upsilon(3S)} = 0.966 pm 0.008_mathrm{stat} pm 0.014_mathrm{syst}$ and is in agreement with the Standard Model prediction of 0.9948 within 2 standard deviations. The uncertainty in ${cal R}_{taumu}^{Upsilon(3S)}$ is almost an order of magnitude smaller than the only previous measurement.
The LHCb measurement of the lifetime ratio of the $Lambda^0_b$ to the $overline{B}^0$ meson is updated using data corresponding to an integrated luminosity of 3.0 fb$^{-1}$ collected using 7 and 8 TeV centre-of-mass energy $pp$ collisions at the LHC. The decay modes used are $overline{B}^0to J/psi p K^-$ and $overline{B}^0to J/psi pi^+ K^-$, where the $pi^+K^-$ mass is consistent with that of the $overline{K}^{*0}(892)$ meson. The lifetime ratio is determined with unprecedented precision to be $0.974pm0.006pm0.004$, where the first uncertainty is statistical and the second systematic. This result is in agreement with original theoretical predictions based on the heavy quark expansion. Using the current world average of the $overline{B}^0$ lifetime, the $Lambda^0_b$ lifetime is found to be $1.479 pm 0.009 pm 0.010$ ps.
The $text{t}bar{text{t}}text{H}(text{b}bar{text{b}})$ process is an essential channel to reveal the Higgs properties but has an irreducible background from the $text{t}bar{text{t}}text{b}bar{text{b}}$ process, which produces a top quark pair in assoc iation with a b quark pair. Therefore, understanding the $text{t}bar{text{t}}text{b}bar{text{b}}$ process is crucial for improving the sensitivity of a search for the $text{t}bar{text{t}}text{H}(text{b}bar{text{b}})$ process. To this end, when measuring the differential cross-section of the $text{t}bar{text{t}}text{b}bar{text{b}}$ process, we need to distinguish the b-jets originated from top quark decays, and additional b-jets originated from gluon splitting. Since there are no simple identification rules, we adopt deep learning methods to learn from data to identify the additional b-jets from the $text{t}bar{text{t}}text{b}bar{text{b}}$ events. Specifically, by exploiting the special structure of the $text{t}bar{text{t}}text{b}bar{text{b}}$ event data, we propose several loss functions that can be minimized to directly increase the matching efficiency, the accuracy of identifying additional b-jets. We discuss the difference between our method and another deep learning-based approach based on binary classification arXiv:1910.14535 using synthetic data. We then verify that additional b-jets can be identified more accurately by increasing matching efficiency directly rather than the binary classification accuracy, using simulated $text{t}bar{text{t}}text{b}bar{text{b}}$ event data in the lepton+jets channel from pp collision at $sqrt{s}$ = 13 TeV.
We propose analytical forms, in both momentum transfer and impact parameter spaces, for the amplitudes of elastic pp scattering, giving coherent and accurate description of the observables at all energies $sqrt{s}geq 20$ GeV. The real and imaginary p arts are separately identified through their roles at small and large t values. The study of the differential cross sections in b-space leads to the understanding of the effective interaction ranges contributing to elastic and inelastic processes.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا