ﻻ يوجد ملخص باللغة العربية
Monte Carlo simulations based on an integration scheme for free energy differences is used to compute critical Casimir forces for three-dimensional Ising films with various boundary fields. We study the scaling behavior of the critical Casimir force, including the scaling variable related to the boundary fields. Finite size corrections to scaling are taken into account. We pay special attention to that range of surface field strengths within which the force changes from repulsive to attractive upon increasing the temperature. Our data are compared with other results available in the literature.
We study critical Casimir forces (CCF) $f_{mathrm C}$ for films of thickness $L$ which in the three-dimensional bulk belong to the Ising universality class and which are exposed to random surface fields (RSF) on both surfaces. We consider the case th
We present a new Monte Carlo method to calculate Casimir forces acting on objects in a near-critical fluid, considering the two basic cases of a wall and a sphere embedded in a two-dimensional Ising medium. During the simulation, the objects are move
The confinement of critical fluctuations in soft media induces critical Casimir forces acting on the confining surfaces. The temperature and geometry dependences of such forces are characterized by universal scaling functions. A novel approach is pre
Using general scaling arguments combined with mean-field theory we investigate the critical ($T simeq T_c$) and off-critical ($T e T_c$) behavior of the Casimir forces in fluid films of thickness $L$ governed by dispersion forces and exposed to long-
Recent experimental data for the complete wetting behavior of pure 4He and of 3He-4He mixtures exposed to solid substrates show that there is a change of the corresponding film thicknesses L upon approaching thermodynamically the lambda-transition an