ترغب بنشر مسار تعليمي؟ اضغط هنا

The near-extreme density of intraday log-returns

110   0   0.0 ( 0 )
 نشر من قبل Mauro Politi
 تاريخ النشر 2011
  مجال البحث مالية
والبحث باللغة English




اسأل ChatGPT حول البحث

The extreme event statistics plays a very important role in the theory and practice of time series analysis. The reassembly of classical theoretical results is often undermined by non-stationarity and dependence between increments. Furthermore, the convergence to the limit distributions can be slow, requiring a huge amount of records to obtain significant statistics, and thus limiting its practical applications. Focussing, instead, on the closely related density of near-extremes -- the distance between a record and the maximal value -- can render the statistical methods to be more suitable in the practical applications and/or validations of models. We apply this recently proposed method in the empirical validation of an adapted financial market model of the intraday market fluctuations.



قيم البحث

اقرأ أيضاً

Being able to predict the occurrence of extreme returns is important in financial risk management. Using the distribution of recurrence intervals---the waiting time between consecutive extremes---we show that these extreme returns are predictable on the short term. Examining a range of different types of returns and thresholds we find that recurrence intervals follow a $q$-exponential distribution, which we then use to theoretically derive the hazard probability $W(Delta t |t)$. Maximizing the usefulness of extreme forecasts to define an optimized hazard threshold, we indicates a financial extreme occurring within the next day when the hazard probability is greater than the optimized threshold. Both in-sample tests and out-of-sample predictions indicate that these forecasts are more accurate than a benchmark that ignores the predictive signals. This recurrence interval finding deepens our understanding of reoccurring extreme returns and can be applied to forecast extremes in risk management.
534 - Taisei Kaizoji 2013
In this study, we investigate the statistical properties of the returns and the trading volume. We show a typical example of power-law distributions of the return and of the trading volume. Next, we propose an interacting agent model of stock markets inspired from statistical mechanics [24] to explore the empirical findings. We show that as the interaction among the interacting traders strengthens both the returns and the trading volume present power-law behavior.
According to the leading models in modern finance, the presence of intraday lead-lag relationships between financial assets is negligible in efficient markets. With the advance of technology, however, markets have become more sophisticated. To determ ine whether this has resulted in an improved market efficiency, we investigate whether statistically significant lagged correlation relationships exist in financial markets. We introduce a numerical method to statistically validate links in correlation-based networks, and employ our method to study lagged correlation networks of equity returns in financial markets. Crucially, our statistical validation of lead-lag relationships accounts for multiple hypothesis testing over all stock pairs. In an analysis of intraday transaction data from the periods 2002--2003 and 2011--2012, we find a striking growth in the networks as we increase the frequency with which we sample returns. We compute how the number of validated links and the magnitude of correlations change with increasing sampling frequency, and compare the results between the two data sets. Finally, we compare topological properties of the directed correlation-based networks from the two periods using the in-degree and out-degree distributions and an analysis of three-node motifs. Our analysis suggests a growth in both the efficiency and instability of financial markets over the past decade.
Code is law is the funding principle of cryptocurrencies. The security, transferability, availability and other properties of a crypto-asset are determined by the code through which it is created. If code is open source, as it happens for most crypto currencies, this principle would prevent manipulations and grant transparency to users and traders. However, this approach considers cryptocurrencies as isolated entities thus neglecting possible connections between them. Here, we show that 4% of developers contribute to the code of more than one cryptocurrency and that the market reflects these cross-asset dependencies. In particular, we reveal that the first coding event linking two cryptocurrencies through a common developer leads to the synchronisation of their returns in the following months. Our results identify a clear link between the collaborative development of cryptocurrencies and their market behaviour. More broadly, our work reveals a so-far overlooked systemic dimension for the transparency of code-based ecosystems and we anticipate it will be of interest to researchers, investors and regulators.
177 - Lucien Boulet 2021
Several academics have studied the ability of hybrid models mixing univariate Generalized Autoregressive Conditional Heteroskedasticity (GARCH) models and neural networks to deliver better volatility predictions than purely econometric models. Despit e presenting very promising results, the generalization of such models to the multivariate case has yet to be studied. Moreover, very few papers have examined the ability of neural networks to predict the covariance matrix of asset returns, and all use a rather small number of assets, thus not addressing what is known as the curse of dimensionality. The goal of this paper is to investigate the ability of hybrid models, mixing GARCH processes and neural networks, to forecast covariance matrices of asset returns. To do so, we propose a new model, based on multivariate GARCHs that decompose volatility and correlation predictions. The volatilities are here forecast using hybrid neural networks while correlations follow a traditional econometric process. After implementing the models in a minimum variance portfolio framework, our results are as follows. First, the addition of GARCH parameters as inputs is beneficial to the model proposed. Second, the use of one-hot-encoding to help the neural network differentiate between each stock improves the performance. Third, the new model proposed is very promising as it not only outperforms the equally weighted portfolio, but also by a significant margin its econometric counterpart that uses univariate GARCHs to predict the volatilities.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا