ﻻ يوجد ملخص باللغة العربية
Formalism of extended Lagrangian represent a systematic procedure to look for the local symmetries of a given Lagrangian action. In this work, the formalism is discussed and applied to a field theory. We describe it in detail for a field theory with first-class constraints present in the Hamiltonian formulation. The method is illustrated on examples of electrodynamics, Yang-Mills field and non-linear sigma model.
After a brief introduction to Heun type functions we note that the actual solutions of the eigenvalue equation emerging in the calculation of the one loop contribution to QCD from the Belavin-Polyakov-Schwarz-Tyupkin instanton and the similar calcula
A general approach is presented to describing nonlinear classical Maxwell electrodynamics with conformal symmetry. We introduce generalized nonlinear constitutive equations, expressed in terms of constitutive tensors dependent on conformal-invariant
This review represents a detailed and comprehensive discussion of the Thermal Field Theory (TFT) concepts and key results in Yukawa-type theories. We start with a general pedagogical introduction into the TFT in the imaginary- and real-time formulati
We study the behavior of Donaldsons invariants of 4-manifolds based on the moduli space of anti self-dual connections (instantons) in the perturbative field theory setting where the underlying source manifold has boundary. It is well-known that these
We continue our study of effective field theory via homotopy transfer of $L_infty$-algebras, and apply it to tree-level non-Wilsonian effective actions of the kind discussed by Sen in which the modes integrated out are comparable in mass to the modes