ﻻ يوجد ملخص باللغة العربية
We use matter power spectra from cosmological hydrodynamic simulations to quantify the effect of baryon physics on the weak gravitational lensing shear signal. The simulations consider a number of processes, such as radiative cooling, star formation, supernovae and feedback from active galactic nuclei (AGN). Van Daalen et al. (2011) used the same simulations to show that baryon physics, in particular the strong feedback that is required to solve the overcooling problem, modifies the matter power spectrum on scales relevant for cosmological weak lensing studies. As a result, the use of power spectra from dark matter simulations can lead to significant biases in the inferred cosmological parameters. We show that the typical biases are much larger than the precision with which future missions aim to constrain the dark energy equation of state, w_0. For instance, the simulation with AGN feedback, which reproduces X-ray and optical properties of groups of galaxies, gives rise to a ~40% bias in w_0. We demonstrate that the modification of the power spectrum is dominated by groups and clusters of galaxies, the effect of which can be modelled. We consider an approach based on the popular halo model and show that simple modifications can capture the main features of baryonic feedback. Despite its simplicity, we find that our model, when calibrated on the simulations, is able to reduce the bias in w_0 to a level comparable to the size of the statistical uncertainties for a Euclid-like mission. While observations of the gas and stellar fractions as a function of halo mass can be used to calibrate the model, hydrodynamic simulations will likely still be needed to extend the observed scaling relations down to halo masses of 10 ^12 M_sun/h.
The Canada-France-Hawaii Telescope Lensing Survey (CFHTLenS) comprises deep multi-colour (u*griz) photometry spanning 154 square degrees, with accurate photometric redshifts and shape measurements. We demonstrate that the redshift probability distrib
Using a sample of 608 Type Ia supernovae from the SDSS-II and BOSS surveys, combined with a sample of foreground galaxies from SDSS-II, we estimate the weak lensing convergence for each supernova line-of-sight. We find that the correlation between th
Baryons and cold dark matter (CDM) did not comove prior to recombination. This leads to differences in the local baryon and CDM densities, the so-called baryon-CDM isocurvature perturbations $delta_{bc}$. These perturbations are usually neglected in
We present a new method for constructing three-dimensional mass maps from gravitational lensing shear data. We solve the lensing inversion problem using truncation of singular values (within the context of generalized least squares estimation) withou
We present a tomographic cosmological weak lensing analysis of the HST COSMOS Survey. Applying our lensing-optimized data reduction, principal component interpolation for the ACS PSF, and improved modelling of charge-transfer inefficiency, we measure