ترغب بنشر مسار تعليمي؟ اضغط هنا

On the generalized resolvent of linear pencils in Banach spaces

89   0   0.0 ( 0 )
 نشر من قبل Qianglian Huang
 تاريخ النشر 2011
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Utilizing the stability characterizations of generalized inverses of linear operator, we investigate the existence of generalized resolvents of linear pencils in Banach spaces. Some practical criterions for the existence of generalized resolvents of the linear pencil $lambdarightarrow T-lambda S$ are provided and an explicit expression of the generalized resolvent is given. As applications, the characterization for the Moore-Penrose inverse of the linear pencil to be its generalized resolvent and the existence of the generalized resolvents of linear pencils of finite rank operators, Fredholm operators and semi-Fredholm operators are also considered. The results obtained in this paper extend and improve many results in this area.



قيم البحث

اقرأ أيضاً

Let $(e_i)_i$ denote the unit vector basis of $ell_p$, $1leq p< infty$, or $c_0$. We construct a reflexive Banach space with an unconditional basis that admits $(e_i)_i$ as a uniformly unique spreading model while it has no subspace with a unique asy mptotic model, and hence it has no asymptotic-$ell_p$ or $c_0$ subspace. This solves a problem of E. Odell. We also construct a space with a unique $ell_1$ spreading model and no subspace with a uniformly unique $ell_1$ spreading model. These results are achieved with the utilization of a new version of the method of saturation under constraints that uses sequences of functionals with increasing weights.
110 - Fanglei Wu 2021
We characterize strong continuity of general operator semigroups on some Lebesgue spaces. In particular, a characterization of strong continuity of weighted composition semigroups on classical Hardy spaces and weighted Bergman spaces with regular wei ghts is given. As applications, our result improves the results of Siskakis, A. G. cite{AG1} and K{o}nig, W. cite{K} and answers a question of Siskakis, A. G. proposed in cite{AG4}. We also characterize strongly continuous semigroups of weighted composition operators on weighted Bergman spaces in terms of abelian intertwiners of multiplication operator $M_z$.
We prove that every isometry between two combinatorial spaces is determined by a permutation of the canonical unit basis combined with a change of signs. As a consequence, we show that in the case of Schreier spaces, all the isometries are given by a change of signs of the elements of the basis. Our results hold for both the real and the complex cases.
Assume that $mathcal{I}$ is an ideal on $mathbb{N}$, and $sum_n x_n$ is a divergent series in a Banach space $X$. We study the Baire category, and the measure of the set $A(mathcal{I}):=left{t in {0,1}^{mathbb{N}} colon sum_n t(n)x_n textrm{ is } mat hcal{I}textrm{-convergent}right}$. In the category case, we assume that $mathcal{I}$ has the Baire property and $sum_n x_n$ is not unconditionally convergent, and we deduce that $A(mathcal{I})$ is meager. We also study the smallness of $A(mathcal{I})$ in the measure case when the Haar probability measure $lambda$ on ${0,1}^{mathbb{N}}$ is considered. If $mathcal{I}$ is analytic or coanalytic, and $sum_n x_n$ is $mathcal{I}$-divergent, then $lambda(A(mathcal{I}))=0$ which extends the theorem of Dindov{s}, v{S}alat and Toma. Generalizing one of their examples, we show that, for every ideal $mathcal{I}$ on $mathbb{N}$, with the property of long intervals, there is a divergent series of reals such that $lambda(A(Fin))=0$ and $lambda(A(mathcal{I}))=1$.
Motivated by a general dilation theory for operator-valued measures, framings and bounded linear maps on operator algebras, we consider the dilation theory of the above objects with special structures. We show that every operator-valued system of imp rimitivity has a dilation to a probability spectral system of imprimitivity acting on a Banach space. This completely generalizes a well-kown result which states that every frame representation of a countable group on a Hilbert space is unitarily equivalent to a subrepresentation of the left regular representation of the group. The dilated space in general can not be taken as a Hilbert space. However, it can be taken as a Hilbert space for positive operator valued systems of imprimitivity. We also prove that isometric group representation induced framings on a Banach space can be dilated to unconditional bases with the same structure for a larger Banach space This extends several known results on the dilations of frames induced by unitary group representations on Hilbert spaces.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا