ﻻ يوجد ملخص باللغة العربية
We follow the dynamics of an ensemble of interacting self-propelled semi-flexible polymers in contact with a thermal bath. We characterize structure and dynamics of the passive system and as a function of the motor activity. We find that the fluctuation-dissipation relation allows for the definition of an effective temperature that is compatible with the results obtained by using a tracer particle as a thermometer. The effective temperature takes a higher value than the temperature of the bath when the effect of the motors is not correlated with the structural rearrangements they induce. Our data are compatible with a dependence upon the square of the motor strength (normalized by the average internal force) and they suggest an intriguing linear dependence on the tracer diffusion constant times the density of the embedding matrix. We show how to use this concept to rationalize experimental results and suggest possible innovative research directions.
We use molecular dynamics simulations to study the dynamics of an ensemble of interacting self-propelled semi-flexible polymers in contact with a thermal bath. Our intention is to model complex systems of biological interest. We find that an effectiv
To develop a minimal model for a cell moving in a crowded environment such as in tissue, we investigate the response of a liquid drop of active matter moving on a flat rigid substrate to forces applied at its boundaries. Our model incorporates active
We study numerically the phases and dynamics of a dense collection of self-propelled particles with soft repulsive interactions in two dimensions. The model is motivated by recent in vitro experiments on confluent monolayers of migratory epithelial a
Recently, Huang, Wu and Florin posted a Comment (0806.4632v1) on our preprint (0804.0730v1) describing nonequilibrium circulation of a colloidal sphere trapped in a optical tweezer. The Comment suggests that evidence for toroidal probability currents
Using monomer-resolved Molecular Dynamics simulations and theoretical arguments based on the radial dependence of the osmotic pressure in the interior of a star, we systematically investigate the effective interactions between hard, colloidal particl