ﻻ يوجد ملخص باللغة العربية
Topological states of matter challenge the paradigm of symmetry breaking, characterized by gapless boundary modes and protected by the topological property of the ground state. Recently, angle-resolved photoemission spectroscopy (ARPES) has revealed that semiconductors of Bi$_{2}$Se$_{3}$ and Bi$_{2}$Te$_{3}$ belong to such a class of materials. Here, we present undisputable evidence for the existence of gapless surface Dirac fermions from transport in Bi$_{2}$Te$_{3}$. We observe Sondheimer oscillation in magnetoresistance (MR). This oscillation originates from the quantization of motion due to the confinement of electrons within the surface layer. Based on Sondheimers transport theory, we determine the thickness of the surface state from the oscillation data. In addition, we uncover the topological nature of the surface state, fitting consistently both the non-oscillatory part of MR and the Hall resistance. The side-jump contribution turns out to dominate around 1 T in Hall resistance while the Berry-curvature effect dominates in 3 T $sim$ 4 T.
Despite the fact that 1111-type iron arsenides hold the record transition temperature of iron-based superconductors, their electronic structures have not been studied much because of the lack of high-quality single crystals. In this study, we complet
The large anisotropy in the electronic properties across a structural transition in several correlated systems has been identified as the key manifestation of electronic nematic order, breaking rotational symmetry. In this context, FeSe is attracting
We show that annihilating a pair of Dirac fermions implies a topological transition from the critical semi-metallic phase to an Obstructed Atomic Limit (OAL) insulator phase instead of a trivial insulator. This is shown to happen because of branch-cu
Relativistic massless Dirac fermions can be probed with high-energy physics experiments, but appear also as low-energy quasi-particle excitations in electronic band structures. In condensed matter systems, their massless nature can be protected by cr
We show that a class of compounds with $I$4/$mcm$ crystalline symmetry hosts three-dimensional semi-Dirac fermions. Unlike the known two-dimensional semi-Dirac points, the degeneracy of these three-dimensional semi-Dirac points is not lifted by spin-