ترغب بنشر مسار تعليمي؟ اضغط هنا

Exchange interactions and magnetic phases of transition metal oxides: benchmarking advanced ab initio methods

156   0   0.0 ( 0 )
 نشر من قبل Thomas Archer
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The magnetic properties of the transition metal monoxides MnO and NiO are investigated at equilibrium and under pressure via several advanced first-principles methods coupled with Heisenberg Hamiltonian MonteCarlo. The comparative first-principles analysis involves two promising beyond-local density functionals approaches, namely the hybrid density functional theory and the recently developed variational pseudo-self-interaction correction method, implemented with both plane-wave and atomic-orbital basis sets. The advanced functionals deliver a very satisfying rendition, curing the main drawbacks of the local functionals and improving over many other previous theoretical predictions. Furthermore, and most importantly, they convincingly demonstrate a degree of internal consistency, despite differences emerging due to methodological details (e.g. plane waves vs. atomic orbitals)



قيم البحث

اقرأ أيضاً

Magnetism of transition metal (TM) oxides is usually described in terms of the Heisenberg model, with orientation-independent interactions between the spins. However, the applicability of such a model is not fully justified for TM oxides because spin polarization of oxygen is usually ignored. In the conventional model based on the Anderson principle, oxygen effects are considered as a property of the TM ion and only TM interactions are relevant. Here, we perform a systematic comparison between two approaches for spin polarization on oxygen in typical TM oxides. To this end, we calculate the exchange interactions in NiO, MnO, and hematite (Fe2O3) for different magnetic configurations using the magnetic force theorem. We consider the full spin Hamiltonian including oxygen sites, and also derive an effective model where the spin polarization on oxygen renormalizes the exchange interactions between TM sites. Surprisingly, the exchange interactions in NiO depend on the magnetic state if spin polarization on oxygen is neglected, resulting in non-Heisenberg behavior. In contrast, the inclusion of spin polarization in NiO makes the Heisenberg model more applicable. Just the opposite, MnO behaves as a Heisenberg magnet when oxygen spin polarization is neglected, but shows strong non-Heisenberg effects when spin polarization on oxygen is included. In hematite, both models result in non-Heisenberg behavior. General applicability of the magnetic force theorem as well as the Heisenberg model to TM oxides is discussed.
We discuss the application of the Agapito Curtarolo and Buongiorno Nardelli (ACBN0) pseudo-hybrid Hubbard density functional to several transition metal oxides. ACBN0 is a fast, accurate and parameter-free alternative to traditional DFT+$U$ and hybri d exact exchange methods. In ACBN0, the Hubbard energy of DFT+$U$ is calculated via the direct evaluation of the local Coulomb and exchange integrals in which the screening of the bare Coulomb potential is accounted for by a renormalization of the density matrix. We demonstrate the success of the ACBN0 approach for the electronic properties of a series technologically relevant mono-oxides (MnO, CoO, NiO, FeO, both at equilibrium and under pressure). We also present results on two mixed valence compounds, Co$_3$O$_4$ and Mn$_3$O$_4$. Our results, obtained at the computational cost of a standard LDA/PBE calculation, are in excellent agreement with hybrid functionals, the GW approximation and experimental measurements.
70 - R. Fresard , M. Raczkowski , 2005
We investigate the magnetic instabilities of the two-dimensional model of interacting e_g electrons for hole doping away from two electrons per site in the mean-field approximation. In particular, we address the occurrence of orbitally polarized stat es due to the inequivalent orbitals, and their interplay with ferromagnetic and antiferromagnetic spin order. The role played by the Hunds exchange coupling J_H and by the crystal field orbital splitting E_z in stabilizing one of the competing phases is discussed in detail.
The expected phenomenology of non-interacting topological band insulators (TBI) is now largely theoretically understood. However, the fate of TBIs in the presence of interactions remains an active area of research with novel, interaction-driven topol ogical states possible, as well as new exotic magnetic states. In this work we study the magnetic phases of an exchange Hamiltonian arising in the strong interaction limit of a Hubbard model on the honeycomb lattice whose non-interacting limit is a two-dimensional TBI recently proposed for the layered heavy transition metal oxide compound, (Li,Na)$_2$IrO$_3$. By a combination of analytical methods and exact diagonalization studies on finite size clusters, we map out the magnetic phase diagram of the model. We find that strong spin-orbit coupling can lead to a phase transition from an antiferromagnetic Neel state to a spiral or stripy ordered state. We also discuss the conditions under which a quantum spin liquid may appear in our model, and we compare our results with the different but related Kitaev-Heisenberg-$J_2$-$J_3$ model which has recently been studied in a similar context.
We have studied the Metal-Insulator like Transition (MIT) in lithium and beryllium ring-shaped clusters through ab initio Density Matrix Renormalization Group (DMRG) method. Performing accurate calculations for different interatomic distances and usi ng Quantum Information Theory (QIT) we investigated the changes occurring in the wavefunction between a metallic-like state and an insulating state built from free atoms. We also discuss entanglement and relevant excitations among the molecular orbitals in the Li and Be rings and show that the transition bond length can be detected using orbital entropy functions. Also, the effect of different orbital basis on the effectiveness of the DMRG procedure is analyzed comparing the convergence behavior.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا