ترغب بنشر مسار تعليمي؟ اضغط هنا

The Formation and Evolution of Virgo Cluster Galaxies - I. Broadband Optical & Infrared Colours

165   0   0.0 ( 0 )
 نشر من قبل Joel Roediger
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Joel C. Roediger




اسأل ChatGPT حول البحث

We use a combination of deep optical (gri) and near-infrared (H) photometry to study the radially-resolved colours of a broad sample of 300 Virgo cluster galaxies. For most galaxy types, we find that the median g-H colour gradient is either flat (gas-poor giants and gas-rich dwarfs) or negative (i.e., colours become bluer with increasing radius; gas-poor dwarfs, spirals, and gas-poor peculiars). Later-type galaxies typically exhibit more negative gradients than early-types. Given the lack of a correlation between the central colours and axis ratios of Virgo spiral galaxies, we argue that dust likely plays a small role, if at all, in setting those colour gradients. We search for possible correlations between galaxy colour and photometric structure or environment and find that the Virgo galaxy colours become redder with increasing concentration, luminosity and surface brightness, while no dependence with cluster-centric radius or local galaxy density is detected (over a range of ~2 Mpc and ~3-16 Mpc^-2, respectively). However, the colours of gas-rich Virgo galaxies do correlate with neutral gas deficiency, such that these galaxies become redder with higher deficiencies. Comparisons with stellar population models suggest that these colour gradients arise principally from variations in stellar metallicity within these galaxies, while age variations only make a significant contribution to the colour gradients of Virgo irregulars. A detailed stellar population analysis based on this material is presented in Roediger et al (2011b; arXiv:1011.3511).



قيم البحث

اقرأ أيضاً

268 - E. Toloba 2010
We present new medium resolution kinematic data for a sample of 21 dwarf early-type galaxies (dEs) mainly in the Virgo cluster, obtained with the WHT and INT telescopes at the Roque de los Muchachos Observatory (La Palma, Spain). These data are used to study the origin of the dwarf elliptical galaxy population inhabiting clusters. We confirm that dEs are not dark matter dominated galaxies, at least up to the half-light radius. We also find that the observed galaxies in the outer parts of the cluster are mostly rotationally supported systems with disky morphological shapes. Rotationally supported dEs have rotation curves similar to those of star forming galaxies of similar luminosity and follow the Tully-Fisher relation. This is expected if dE galaxies are the descendant of low luminosity star forming systems which recently entered the cluster environment and lost their gas due to a ram pressure stripping event, quenching their star formation activity and transforming into quiescent systems, but conserving their angular momentum.
129 - Joel C. Roediger 2010
We use a combination of deep optical and near-infrared light profiles for a morphologically diverse sample of Virgo cluster galaxies to study the radially-resolved stellar populations of cluster galaxies over a wide range of galaxy structure. We find that, in the median, the age gradients of Virgo galaxies are either flat (lenticulars and Sa-Sb spirals) or positive (ellipticals, Sbc+Sc spirals, gas-rich dwarfs, and irregulars), while all galaxy types have a negative median metallicity gradient. Comparison of the galaxy stellar population diagnostics (age, metallicity, and gradients thereof) against structural and environmental parameters also reveals that the ages of gas-rich systems depend mainly on their atomic gas deficiencies. Conversely, the metallicities of Virgo gas-poor galaxies depend on their concentrations, luminosities, and surface brightnesses. The stellar population gradients of all Virgo galaxies exhibit no dependence on either their structure or environment. We interpret these stellar population data for Virgo galaxies in the context of popular formation and evolution scenarios, and suggest that gas-poor giants grew hierarchically (through dissipative starbursts), gas-poor dwarfs have descended from at least two different production channels (e.g., environmental transformation and merging), while spirals formed inside-out, but with star formation in the outskirts of a significant fraction of the population having been quenched due to ram pressure stripping. (Abridged)
201 - E. Toloba 2012
We place our sample of 18 Virgo dwarf early-type galaxies (dEs) on the V-K - velocity dispersion, Faber-Jackson, and Fundamental Plane (FP) scaling relations for massive early-type galaxies (Es). We use a generalized velocity dispersion, which includ es rotation, to be able to compare the location of both rotationally and pressure supported dEs with those of early and late-type galaxies. We find that dEs seem to bend the Faber-Jackson relation of Es to lower velocity dispersions, being the link between Es and dwarf spheroidal galaxies (dSphs). Regarding the FP relation, we find that dEs are significantly offset with respect to massive hot stellar systems, and re-casting the FP into the so-called kappa-space suggests that this offset is related to dEs having a total mass-to-light ratio higher than Es but still significantly lower than dSph galaxies. Given a stellar mass-to-light ratio based on the measured line indices of dEs, the FP offset allows us to infer that the dark matter fraction within the half light radii of dEs is on average >~ 42% (uncertainties of 17% in the K band and 20% in the V band), fully consistent with an independent estimate in an earlier paper in this series. We also find that dEs in the size-luminosity relation in the near-infrared, like in the optical, are offset from early-type galaxies, but seem to be consistent with late-type galaxies. We thus conclude that the scaling relations show that dEs are different from Es, and that they further strengthen our previous findings that dEs are closer to and likely formed from late-type galaxies.
At ~16-17Mpc from us, the Virgo cluster is a formidable source of information to study cluster formation and galaxy evolution in rich environments. Several observationally-driven formation scenarios arose within the past decade to explain the propert ies of galaxies that entered the cluster recently and the nature of the last significant merger that the cluster underwent. Confirming these scenarios requires extremely faithful numerical counterparts of the cluster. This paper presents the first CLONE, Constrained LOcal and Nesting Environment, simulation of the Virgo cluster within a ~15Mpc radius sphere. This cosmological hydrodynamical simulation, with feedback from supernovae and active galactic nuclei, with a ~3x10^7Msun dark matter particle mass and a minimum cell size of 350pc in the zoom region, reproduces Virgo within its large scale environment unlike a random cluster simulation. Overall the distribution of the simulated galaxy population matches the observed one including M87. The simulated cluster formation reveals exquisite agreements with observationally-driven scenarios: within the last Gigayear, about 300 small galaxies (M*>10^7Msun) entered the cluster, most of them within the last 500Myr. The last significant merger event occurred about 2 Gigayears ago: a group with a tenth of the mass of todays cluster entered from the far side as viewed from the Milky Way. This excellent numerical replica of Virgo will permit studying different galaxy type evolution (jellyfish, backsplash, etc.) as well as feedback phenomena in the cluster core via unbiased comparisons between simulated and observed galaxies and hot gas phase profiles to understand this great physics laboratory.
210 - Roberto P. Mu~noz 2013
The NGVS-IR project (Next Generation Virgo Survey - Infrared) is a contiguous near-infrared imaging survey of the Virgo cluster of galaxies. It complements the optical wide-field survey of Virgo (NGVS). The current state of NGVS-IR consists of Ks-ban d imaging of 4 deg^2 centered on M87, and J and Ks-band imaging of 16 deg^2 covering the region between M49 and M87. In this paper, we present the observations of the central 4 deg^2 centered on Virgos core region. The data were acquired with WIRCam on the Canada-France-Hawaii Telescope and the total integration time was 41 hours distributed in 34 contiguous tiles. A survey-specific strategy was designed to account for extended galaxies while still measuring accurate sky brightness within the survey area. The average 5sigma limiting magnitude is Ks=24.4 AB mag and the 50% completeness limit is Ks=23.75 AB mag for point source detections, when using only images with better than 0.7 seeing (median seeing 0.54). Star clusters are marginally resolved in these image stacks, and Virgo galaxies with mu_Ks=24.4 AB mag arcsec^-2 are detected. Combining the Ks data with optical and ultraviolet data, we build the uiK color-color diagram which allows a very clean color-based selection of globular clusters in Virgo. This diagnostic plot will provide reliable globular cluster candidates for spectroscopic follow-up campaigns needed to continue the exploration of Virgos photometric and kinematic sub-structures, and will help the design of future searches for globular clusters in extragalactic systems. Equipped with this powerful new tool, future NGVS-IR investigations based on the uiK diagram will address the mapping and analysis of extended structures and compact stellar systems in and around Virgo galaxies.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا