ترغب بنشر مسار تعليمي؟ اضغط هنا

Massive Higher Spins from BRST and Tractors

134   0   0.0 ( 0 )
 نشر من قبل Andrew K. Waldron
 تاريخ النشر 2011
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We obtain the higher spin tractor equations of motion conjectured by Gover et al. from a BRST approach and use those methods to prove that they describe massive, partially massless and massless higher spins in conformally flat backgrounds. The tractor description makes invariance under local choices of unit system manifest. In this approach, physical systems are described by conformal, rather than (pseudo-)Riemannian geometry. In particular masses become geometric quantities, namely the weights of tractor fields. Massive systems can therefore be handled in a unified and simple manner mimicking the gauge principle usually employed for massless models. From a holographic viewpoint, these models describe both the bulk and boundary theories in terms of conformal geometry. This is an important advance, because tying the boundary conformal structure to that of the bulk theory gives greater control over a bulk--boundary correspondence.



قيم البحث

اقرأ أيضاً

At the free level, a given massless field can be described by an infinite number of different potentials related to each other by dualities. In terms of Young tableaux, dualities replace any number of columns of height $h_i$ by columns of height $D-2 -h_i$, where $D$ is the spacetime dimension: in particular, applying this operation to empty columns gives rise to potentials containing an arbitrary number of groups of $D-2$ extra antisymmetric indices. Using the method of parent actions, action principles including these potentials, but also extra fields, can be derived from the usual ones. In this paper, we revisit this off-shell duality and clarify the counting of degrees of freedom and the role of the extra fields. Among others, we consider the examples of the double dual graviton in $D=5$ and two cases, one topological and one dynamical, of exotic dualities leading to spin three fields in $D=3$.
A contribution to the collection of reviews Introduction to Higher Spin Theory edited by S. Fredenhagen, this introductory article is a pedagogical account of higher-spin fields and their connections with String Theory. We start with the motivations for and a brief historical overview of the subject. We discuss the Wigner classifications of unitary irreducible Poincare-modules, write down covariant field equations for totally symmetric massive and massless representations in flat space, and consider their Lagrangian formulation. After an elementary exposition of the AdS unitary representations, we review the key no-go and yes-go results concerning higher-spin interactions, e.g., the Velo-Zwanziger acausality and its string-theoretic resolution among others. The unfolded formalism, which underlies Vasilievs equations, is then introduced to reformulate the flat-space Bargmann-Wigner equations and the AdS massive-scalar Klein-Gordon equation, and to state the central on-mass-shell theorem. These techniques are used for deriving the unfolded form of the boundary-to-bulk propagator in $AdS_4$, which in turn discloses the asymptotic symmetries of (supersymmetric) higher-spin theories. The implications for string-higher-spin dualities revealed by this analysis are then elaborated.
149 - A. Sagnotti 2010
The simplest higher-spin interactions involve classical external currents and symmetric tensors $phi_{m_1 ... m_s}$, and convey three instructive lessons. The first is a general form of the van Dam-Veltman-Zakharov discontinuity in flat space for thi s class of fields. The second is the rationale for its disappearance in (A)dS spaces. Finally, the third is a glimpse into an option which is commonly overlooked in Field Theory, and which both higher spins and String Theory are confronting us with: one can well allow in the Lagrangians non-local terms that do not spoil the local nature of physical quantities.
182 - Marco Scalisi 2019
We study the implications on inflation of an infinite tower of higher-spin states with masses falling exponentially at large field distances, as dictated by the Swampland Distance Conjecture. We show that the Higuchi lower bound on the mass of the to wer automatically translates into an upper bound on the inflaton excursion. Strikingly, the mere existence of all spins in the tower forbids any scalar displacement whatsoever, at arbitrarily small Hubble scales, and it turns out therefore incompatible with inflation. A certain field excursion is allowed only if the tower has a cut-off in spin. Finally, we show that this issue is circumvented in the case of a tower of string excitations precisely because of the existence of such a cut-off, which decreases fast enough in field space.
85 - D. Francia 2007
The (Fang-)Fronsdal formulation for free fully symmetric (spinor-) tensors rests on (gamma-)trace constraints on gauge fields and parameters. When these are relaxed, glimpses of the underlying geometry emerge: the field equations extend to non-local expressions involving the higher-spin curvatures, and with only a pair of additional fields an equivalent ``minimal local formulation is also possible. In this paper we complete the discussion of the ``minimal formulation for fully symmetric (spinor-) tensors, constructing one-parameter families of Lagrangians and extending them to (A)dS backgrounds. We then turn on external currents, that in this setting are subject to conventional conservation laws and, by a close scrutiny of current exchanges in the various formulations, we clarify the precise link between the local and non-loca
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا