We present a 3-dimensional (3D) numerical solver of the linearized compressible Euler equations (GALE -- Global Acoustic Linearized Euler), used to model acoustic oscillations throughout the solar interior. The governing equations are solved in conse
rvation form on a fully global spherical mesh ($0 le phi le 2pi$, $0 le theta le pi$, $0 le r le R_{odot}$) over a background state generated by the standard Solar Model S. We implement an efficient pseudo-spectral computational method to calculate the contribution of the compressible material derivative dyad to internal velocity perturbations, computing oscillations over arbitrary 3D background velocity fields. This model offers a foundation for a forward-modeling approach, using helioseismology techniques to explore various regimes of internal mass flows. We demonstrate the efficacy of the numerical method presented in this paper by reproducing observed solar power spectra, showing rotational splitting due to differential rotation, and applying local helioseismology techniques to measure travel times created by a simple model of single-cell meridional circulation.
Time-distance helioseismology is a technique for measuring the time for waves to travel from one point on the solar surface to another. These wave travel times are affected by advection by subsurface flows. Inferences of plasma flows based on observe
d travel times depend critically on the ability to accurately model the effects of subsurface flows on time-distance measurements. We present a Born approximation based computation of the sensitivity of time distance travel times to weak, steady, inhomogeneous subsurface flows. Three sensitivity functions are obtained, one for each component of the 3D vector flow. We show that the depth sensitivity of travel times to horizontally uniform flows is given approximately by the kinetic energy density of the oscillation modes which contribute to the travel times. For flows with strong depth dependence, the Born approximation can give substantially different results than the ray approximation.