ﻻ يوجد ملخص باللغة العربية
Recent studies have predicted extraordinary properties for transverse domain walls in cylindrical nanowires: zero depinning current, the absence of the Walker breakdown, and applications as domain wall oscillators. In order to reliably control the domain wall motion, it is important to understand how they interact with energy barriers. In this paper, we study the motion and depinning of transverse domain walls through potential barriers in ferromagnetic cylindrical nanowires. We use magnetic fields and spin-polarized currents to drive the domain walls along the wire. Using magnetic fields, we find that the minimum and the maximum fields required to push the domain wall through the barrier differ by 30 %. On the contrary, using spin-polarized currents, we find variations of a factor 130 between the minimum value of the depinning current density and the maximum value. We study the depinning current density as a function of the height of the energy barrier using numerical and analytical methods. We find that, for a barrier of 40 k_B T, a depinning current density of about 5 uA is sufficient to depin the domain wall. We reveal and explain the mechanism that leads to these unusually low depinning currents. One requirement for this new depinning mechanism is for the domain wall to be able to rotate around its own axis. With the right barrier design, the spin torque transfer term is acting exactly against the damping in the micromagnetic system, and thus the low current density is sufficient to accumulate enough energy quickly. These key insights may be crucial in furthering the development of novel memory technologies, such as the racetrack memory, that can be controlled through low current densities.
We report several procedures for the robust nucleation of magnetic domain walls in cylindrical permalloy nanowires. Specific features of the magnetic force microscopy contrast of such soft wires are discussed, with a view to avoid the misinterpretati
The motion of magnetic domain walls in ultrathin magnetic heterostructures driven by current via the spin Hall torque is described. We show results from perpendicularly magnetized CoFeB|MgO heterostructures with various heavy metal underlayers. The d
Antiferromagnetic materials are outstanding candidates for next generation spintronic applications, because their ultrafast spin dynamics makes it possible to realize several orders of magnitude higher-speed devices than conventional ferromagnetic ma
The interaction between a spin polarized dc electrical current and spin wave modes of a cylindrical nanowire is investigated in this report. We found that close to the critical current, the uniform mode is suppressed, while the edge mode starts to pr
Use of a spin polarized current for the manipulation of magnetic domain walls in ferromagnetic nanowires has been the subject of intensive research for many years. Recently, due to technological advancements, creating nano-contacts with special chara