ﻻ يوجد ملخص باللغة العربية
We present a framework to elucidate the existence of accidental contacts of energy bands, particularly those called Dirac points which are the point contacts with linear energy dispersions in their vicinity. A generalized von-Neumann-Wigner theorem we propose here gives the number of constraints on the lattice necessary to have contacts without fine tuning of lattice parameters. By counting this number, one could quest for the candidate of Dirac systems without solving the secular equation. The constraints can be provided by any kinds of symmetry present in the system. The theory also enables the analytical determination of k-point having accidental contact by selectively picking up only the degenerate solution of the secular equation. By using these frameworks, we demonstrate that the Dirac points are feasible in various two-dimensional lattices, e.g. the anisotropic Kagome lattice under inversion symmetry is found to have contacts over the whole lattice parameter space. Spin-dependent cases, such as the spin-density-wave state in LaOFeAs with reflection symmetry, are also dealt with in the present scheme.
Xenes, graphene-like two-dimensional (2D) monoelemental crystals with a honeycomb symmetry, have been the focus of numerous experimental and theoretical studies. In comparison, single-element 2D materials with a triangular lattice symmetry have not r
We present an accurate ab initio tight-binding model, capable of describing the dynamics of Dirac points in tunable honeycomb optical lattices following a recent experimental realization [L. Tarruell et al., Nature 483, 302 (2012)]. Our scheme is bas
We study thermal rectifying effect in two dimensional (2D) systems consisting of the Frenkel Kontorva (FK) lattice and the Fermi-Pasta-Ulam (FPU) lattice. It is found that the rectifying effect is related to the asymmetrical interface thermal resista
The modes of vibrations in honeycomb and auxetic structures are studied, with models in which the lattice is represented by a planar network where sites are connected by strings and rigid rods. The auxetic network is obtained modifying a model propos
The structural and electronic properties of germanene coated Ge$_2$Pt clusters have been determined by scanning tunneling microscopy and spectroscopy at room temperature. The interior of the germanene sheet exhibits a buckled honeycomb structure with