ترغب بنشر مسار تعليمي؟ اضغط هنا

Popping star clusters as building blocks of the Milky Way Thick Disc

145   0   0.0 ( 0 )
 نشر من قبل Pavel Kroupa
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English
 تأليف P. Assmann




اسأل ChatGPT حول البحث

It is widely believed that star clusters form with low star formation efficiencies. With the onset of stellar winds by massive stars or finally when the first super nova blows off, the residual gas is driven out of the embedded star cluster. Due to this fact a large amount, if not all, of the stars become unbound and disperse in the gravitational potential of the galaxy. In this context, Kroupa (2002) suggested a new mechanism for the emergence of thickened Galactic discs. Massive star clusters add kinematically hot components to the galactic field populations, building up in this way, the Galactic thick disc as well. In this work we perform, for the first time, numerical simulations to investigate this scenario for the formation of the galactic discs of the Milky Way. We find that a significant kinematically hot population of stars may be injected into the disk of a galaxy such that a thick disk emerges. For the MW the star clusters that formed the thick disk must have had masses of about 10^6 Msol.



قيم البحث

اقرأ أيضاً

We study numerically the formation of dSph galaxies. Intense star bursts, e.g. in gas-rich environments, typically produce a few to a few hundred young star clusters, within a region of just a few hundred pc. The dynamical evolution of these star clu sters may explain the formation of the luminous component of dwarf spheroidal galaxies (dSph). Here we perform a numerical experiment to show that the evolution of star clusters complexes in dark matter haloes can explain the formation of the luminous components of dSph galaxies.
In the MW bulge, metal-rich stars form a strong bar and are more peanut-shaped than metal-poor stars. It has been recently claimed that this behavior is driven by the initial in-plane radial velocity dispersion of these populations, rather than by th eir initial vertical random motions. This has led to the suggestion that a thick disc is not necessary to explain the characteristics of the MW bulge. We rediscuss this issue by analyzing two dissipationless N-body simulations of boxy/peanut (b/p)-shaped bulges formed from composite stellar discs, made of kinematically cold and hot stellar populations, and we conclude that initial vertical random motions are as important as in-plane random motions in determining the relative contribution of cold and hot disc populations with height above the plane, the metallicity and age trends. Previous statements emphasizing the dominant role of in-plane motions in determining these trends are not confirmed. However, differences exist in the morphology and strength of the resulting b/p-shaped bulges: a model where disc populations have initially only different in-plane random motions, but similar thickness, results into a b/p bulge where all populations have a similar peanut shape, independently on their initial kinematics, or metallicity. We discuss the reasons behind these differences, and also predict the signatures that these two extreme initial conditions would leave on the vertical age and metallicity gradients of disc stars, outside the bulge region. We conclude that a metal-poor, kinematically (radial and vertical) hot component, that is a thick disc, is necessary in the MW before bar formation, supporting the scenario traced in previous works. [abridged]
82 - Miho N. Ishigaki 2019
I would like to review recent efforts of detailed chemical abundance measurements for field Milky Way halo stars. Thanks to the advent of wide-field spectroscopic surveys up to a several kpc from the Sun, large samples of field halo stars with detail ed chemical measurements are continuously expanding. Combination of the chemical information and full six dimensional phase-space information is now recognized as a powerful tool to identify cosmological accretion events that have built a sizable fraction of the present-day stellar halo. Future observational prospects with wide-field spectroscopic surveys and theoretical prospects with supernova nucleosynthetic yields are also discussed.
162 - Sergio Molinari 2014
The cycling of material from the interstellar medium (ISM) into stars and the return of stellar ejecta into the ISM is the engine that drives the galactic ecology in normal spirals, a cornerstone in the formation and evolution of galaxies through cos mic time. Major observational and theoretical challenges need to be addressed in determining the processes responsible for converting the low-density ISM into dense molecular clouds, forming dense filaments and clumps, fragmenting them into stars, OB associations and bound clusters, and characterizing the feedback that limits the rate and efficiency of star formation. This formidable task can be now effectively attacked thanks to the combination of new global-scale surveys of the Milky Way Galactic Plane from infrared to radio wavelengths, offering the possibility of bridging the gap between local and extragalactic star formation studies. The Herschel, Spitzer and WISE mid to far infrared continuum surveys, complemented by analogue surveys from ground-based facilities in the millimetre and radio wavelengths, enables us to measure the Galactic distribution and physical properties of dust on all scales and in all components of the ISM from diffuse clouds to filamentary complexes and tens of thousands of dense clumps. A complementary suite of spectroscopic surveys in various atomic and molecular tracers is providing the chemical fingerprinting of dense clumps and filaments, as well as essential kinematic information to derive distances and thus transform panoramic data into a 3D representation. The latest results emerging from these Galaxy-scale surveys are reviewed. New insights into cloud formation and evolution, filaments and their relationship to channeling gas onto gravitationally-bound clumps, the properties of these clumps, density thresholds for gravitational collapse, and star and cluster formation rates are discussed.
88 - P. Di Matteo 2016
The Galactic bulge, that is the prominent out-of-plane over-density present in the inner few kiloparsecs of the Galaxy, is a complex structure, as the morphology, kinematics, chemistry and ages of its stars indicate. To understand the nature of its m ain components -- those at [Fe/H] >~ -1 dex -- it is necessary to make an inventory of the stellar populations of the Galactic disc(s), and of their borders : the chemistry of the disc at the solar vicinity, well known from detailed studies of stars over many years, is not representative of the whole disc. This finding, together with the recent revisions of the mass and sizes of the thin and thick discs, constitutes a major step in understanding the bulge complexity. N-body models of a boxy/peanut-shaped bulge formed from a thin disc through the intermediary of a bar have been successful in interpreting a number of global properties of the Galactic bulge, but they fail in reproducing the detailed chemo-kinematic relations satisfied by its components and their morphology. It is only by adding the thick disc to the picture that we can understand the nature of the Galactic bulge.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا