ترغب بنشر مسار تعليمي؟ اضغط هنا

Formation of Modularity in a Model of Evolving Networks

183   0   0.0 ( 0 )
 نشر من قبل Li Menghui
 تاريخ النشر 2011
والبحث باللغة English




اسأل ChatGPT حول البحث

Modularity structures are common in various social and biological networks. However, its dynamical origin remains an open question. In this work, we set up a dynamical model describing the evolution of a social network. Based on the observations of real social networks, we introduced a link-creating/deleting strategy according to the local dynamics in the model. Thus the coevolution of dynamics and topology naturally determines the network properties. It is found that for a small coupling strength, the networked system cannot reach any synchronization and the network topology is homogeneous. Interestingly, when the coupling strength is large enough, the networked system spontaneously forms communities with different dynamical states. Meanwhile, the network topology becomes heterogeneous with modular structures. It is further shown that in a certain parameter regime, both the degree and the community size in the formed network follow a power-law distribution, and the networks are found to be assortative. These results are consistent with the characteristics of many empirical networks, and are helpful to understand the mechanism of formation of modularity in complex networks.



قيم البحث

اقرأ أيضاً

Heavy-tailed distributions of meme popularity occur naturally in a model of meme diffusion on social networks. Competition between multiple memes for the limited resource of user attention is identified as the mechanism that poises the system at crit icality. The popularity growth of each meme is described by a critical branching process, and asymptotic analysis predicts power-law distributions of popularity with very heavy tails (exponent $alpha<2$, unlike preferential-attachment models), similar to those seen in empirical data.
89 - Feng Hu , Lin Ma , Xiu-Xiu Zhan 2021
The study of citation networks is of interest to the scientific community. However, the underlying mechanism driving individual citation behavior remains imperfectly understood, despite the recent proliferation of quantitative research methods. Tradi tional network models normally use graph theory to consider articles as nodes and citations as pairwise relationships between them. In this paper, we propose an alternative evolutionary model based on hypergraph theory in which one hyperedge can have an arbitrary number of nodes, combined with an aging effect to reflect the temporal dynamics of scientific citation behavior. Both theoretical approximate solution and simulation analysis of the model are developed and validated using two benchmark datasets from different disciplines, i.e. publications of the American Physical Society (APS) and the Digital Bibliography & Library Project (DBLP). Further analysis indicates that the attraction of early publications will decay exponentially. Moreover, the experimental results show that the aging effect indeed has a significant influence on the description of collective citation patterns. Shedding light on the complex dynamics driving these mechanisms facilitates the understanding of the laws governing scientific evolution and the quantitative evaluation of scientific outputs.
Motivated by results of Henry, Pralat and Zhang (PNAS 108.21 (2011): 8605-8610), we propose a general scheme for evolving spatial networks in order to reduce their total edge lengths. We study the properties of the equilbria of two networks from this class, which interpolate between three well studied objects: the ErdH{o}s-R{e}nyi random graph, the random geometric graph, and the minimum spanning tree. The first of our two evolutions can be used as a model for a social network where individuals have fixed opinions about a number of issues and adjust their ties to be connected to people with similar views. The second evolution which preserves the connectivity of the network has potential applications in the design of transportation networks and other distribution systems.
195 - Sven Banisch , Ricardo Lima 2012
For Agent Based Models, in particular the Voter Model (VM), a general framework of aggregation is developed which exploits the symmetries of the agent network $G$. Depending on the symmetry group $Aut_{omega} (N)$ of the weighted agent network, certa in ensembles of agent configurations can be interchanged without affecting the dynamical properties of the VM. These configurations can be aggregated into the same macro state and the dynamical process projected onto these states is, contrary to the general case, still a Markov chain. The method facilitates the analysis of the relation between microscopic processes and a their aggregation to a macroscopic level of description and informs about the complexity of a system introduced by heterogeneous interaction relations. In some cases the macro chain is solvable.
Networks are a convenient way to represent complex systems of interacting entities. Many networks contain communities of nodes that are more densely connected to each other than to nodes in the rest of the network. In this paper, we investigate the d etection of communities in temporal networks represented as multilayer networks. As a focal example, we study time-dependent financial-asset correlation networks. We first argue that the use of the modularity quality function---which is defined by comparing edge weights in an observed network to expected edge weights in a null network---is application-dependent. We differentiate between null networks and null models in our discussion of modularity maximization, and we highlight that the same null network can correspond to different null models. We then investigate a multilayer modularity-maximization problem to identify communities in temporal networks. Our multilayer analysis only depends on the form of the maximization problem and not on the specific quality function that one chooses. We introduce a diagnostic to measure emph{persistence} of community structure in a multilayer network partition. We prove several results that describe how the multilayer maximization problem measures a trade-off between static community structure within layers and larger values of persistence across layers. We also discuss some computational issues that the popular Louvain heuristic faces with temporal multilayer networks and suggest ways to mitigate them.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا