ﻻ يوجد ملخص باللغة العربية
We present an inflationary scenario based on a phenomenologically viable model with direct gauge mediation of low-scale supersymmetry breaking. Inflation can occur in the supersymmetry-breaking hidden sector. Although the reheating temperature from the inflaton decay is so high that the gravitino problem seems to be severe, late time entropy production from the decay of the pseudomoduli field associated with the supersymmetry breaking can dilute gravitinos sufficiently. We show that gravitinos are also produced from the pseudomoduli decay and there is a model parameter space where gravitinos can be the dark matter in the present universe.
We investigate the Q-ball decay in the gauge-mediated SUSY breaking. Q balls decay mainly into nucleons, and partially into gravitinos, while they are kinematically forbidden to decay into sparticles which would be cosmologically harmful. This is ach
We reinvestigate the scenario that the amount of the baryons and the gravitino dark matter is naturally explained by the decay of the Q balls in the gauge-mediated SUSY breaking. Equipped by the more correct decay rates into gravitinos and baryons re
A keV-scale gravitino arsing from a minimal supersymmetric (SUSY) Standard Model (MSSM) is an interesting possibility since the small scale problems that $Lambda$CDM model encounters in the modern cosmology could be alleviated with the keV-scale grav
We investigate supersymmetric hybrid inflation in a realistic model based on the gauge symmetry $SU(4)_c times SU(2)_L times SU(2)_R$. The minimal supersymmetric standard model (MSSM) $mu$ term arises, following Dvali, Lazarides, and Shafi, from the
We study Q-ball dark matter in gauge-mediated supersymmetry breaking, and seek the possibility of detection in the IceCube experiment. We find that the Q balls would be the dark matter in the parameter region different from that for gravitino dark ma