ﻻ يوجد ملخص باللغة العربية
The absolute flux calibration of the James Webb Space Telescope will be based on a set of stars observed by the Hubble and Spitzer Space Telescopes. In order to cross-calibrate the two facilities, several A, G, and white dwarf (WD) stars are observed with both Spitzer and Hubble and are the prototypes for a set of JWST calibration standards. The flux calibration constants for the four Spitzer IRAC bands 1-4 are derived from these stars and are 2.3, 1.9, 2.0, and 0.5% lower than the official cold-mission IRAC calibration of Reach et al. (2005), i.e. in agreement within their estimated errors of ~2%. The causes of these differences lie primarily in the IRAC data reduction and secondarily in the SEDs of our standard stars. The independent IRAC 8 micron band-4 fluxes of Rieke et al. (2008) are about 1.5 +/- 2% higher than those of Reach et al. and are also in agreement with our 8 micron result.
The Infrared Array Camera (IRAC) on the Spitzer Space Telescope is absolutely calibrated by comparing photometry on a set of A stars near the north ecliptic pole to predictions based on ground-based observations and a stellar atmosphere model. The br
The Hubble Space Telescope (HST) has been the most impactful science-driven mission ever flown by NASA. However, when HST reaches the end of its life, there will be a void due to the loss of some of the science capabilities afforded by HST to astrono
The coronagraphic instrument currently proposed for the WFIRST-AFTA mission will be the first example of a space-based coronagraph optimized for extremely high contrasts that are required for the direct imaging of exoplanets reflecting the light of t
Over the past two decades, thousands of confirmed exoplanets have been detected; the next major challenge is to characterize these other worlds and their stellar systems. Much information on the composition and formation of exoplanets and circumstell