ترغب بنشر مسار تعليمي؟ اضغط هنا

Amplitudes of thermal and kinetic Sunyaev-Zeldovich signals from small-scale CMB anisotropies

107   0   0.0 ( 0 )
 نشر من قبل Francesco De Bernardis
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

While the arcminute-scale Cosmic Microwave Background (CMB) anisotropies are due to secondary effects, point sources dominate the total anisotropy power spectrum. At high frequencies the point sources are primarily in the form of dusty, star-forming galaxies. Both Herschel and Planck have recently measured the anisotropy power spectrum of cosmic infrared background (CIB) generated by dusty, star-forming galaxies from degree to sub-arcminute angular scales, including the non-linear clustering of these galaxies at multipoles of 3000 to 6000 relevant to CMB secondary anisotropy studies. We scale the CIB angular power spectra to CMB frequencies and interpret the combined WMAP-7 year and arcminute-scale Atacama Cosmology Telescope (ACT) and South Pole Telescope (SPT) CMB power spectra measurements to constrain the Sunyaev-Zeldovich (SZ) effects. Allowing the CIB clustering amplitude to vary, we constrain the amplitudes of thermal and kinetic SZ power spectra at 150 GHz.



قيم البحث

اقرأ أيضاً

We propose a new analysis of small scale CMB data by introducing the cosmological dependency of the foreground signals, focusing first on the thermal Sunyaev-Zeldovich (tSZ) power spectrum, derived from the halo model. We analyse the latest observati ons by the South Pole Telescope (SPT) of the high-$ell$ power (cross) spectra at 90, 150 and 220 GHz, as the sum of CMB and tSZ signals, both depending on cosmological parameters, and remaining contaminants. In order to perform faster analyses, we propose a new tSZ modelling based on machine learning algorithms (namely Random Forest). We show that the additional information contained in the tSZ power spectrum tightens constraints on cosmological and tSZ scaling relation parameters. We combine for the first time the Planck tSZ data with SPT high-$ell$ to derive even stronger constraints. Finally, we show how the amplitude of the remaining kSZ power spectrum varies depending on the assumptions made on both tSZ and cosmological parameters.
Thermal Sunyaev-Zeldovich effect is one of the recent probes of cosmology and large scale structures. We update constraints on cosmological parameters from galaxy clusters observed by the Planck satellite in a first attempt to combine cluster number counts and power spectrum of hot gas, using the new value of the optical depth, and sampling at the same time on cosmological and scaling-relation parameters. We find that in the $Lambda$CDM model, the addition of tSZ power spectrum provides only small improvements with respect to number counts only, leading to the $68%$ c.l. constraints $Omega_m = 0.32 pm 0.02$, $sigma_8 = 0.77pm0.03 $ and $sigma_8 (Omega_m/0.3)^{1/3}= 0.78pm0.03$ and lowering the discrepancy with CMB primary anisotropies results (updated with the new value of $tau$) to $simeq 1.6, sigma$ on $sigma_8$. We analyse extensions to standard model, considering the effect of massive neutrinos and varying the equation of state parameter for dark energy. In the first case, we find that the addition of tSZ power spectrum helps in strongly improving cosmological constraints with respect to number counts only results, leading to the $95%$ upper limit $sum m_{ u}< 1.53 , text{eV}$. For the varying dark energy EoS scenario, we find again no important improvements when adding tSZ power spectrum, but still the combination of tSZ probes is able in providing constraints, producing $w = -1.0pm 0.2$. In all cosmological scenari the mass bias to reconcile CMB and tSZ probes remains low: $(1-b)lesssim 0.66$ as compared to estimates from weak lensing and Xray mass estimate comparisons or numerical simulations.
Clusters of galaxies provide valuable information on the evolution of the Universe and large scale structures. Recent cluster observations via the thermal Sunyaev-Zeldovich (tSZ) effect have proven to be a powerful tool to detect and study them. In t his context, high resolution tSZ observations (~ tens of arcsec) are of particular interest to probe intermediate and high redshift clusters. Observations of the tSZ effect will be carried out with the millimeter dual-band NIKA2 camera, based on Kinetic Inductance Detectors (KIDs) to be installed at the IRAM 30-meter telescope in 2015. To demonstrate the potential of such an instrument, we present tSZ observations with the NIKA camera prototype, consisting of two arrays of 132 and 224 detectors that observe at 140 and 240 GHz with a 18.5 and 12.5 arcsec angular resolution, respectively. The cluster RX J1347.5-1145 was observed simultaneously at 140 and 240 GHz. We used a spectral decorrelation technique to remove the atmospheric noise and obtain a map of the cluster at 140 GHz. The efficiency of this procedure has been characterized through realistic simulations of the observations. The observed 140 GHz map presents a decrement at the cluster position consistent with the tSZ nature of the signal. We used this map to study the pressure distribution of the cluster by fitting a gNFW model to the data. Subtracting this model from the map, we confirm that RX J1347.5-1145 is an ongoing merger, which confirms and complements previous tSZ and X-ray observations. For the first time, we demonstrate the tSZ capability of KID based instruments. The NIKA2 camera with ~ 5000 detectors and a 6.5 arcmin field of view will be well-suited for in-depth studies of the intra cluster medium in intermediate to high redshifts, which enables the characterization of recently detected clusters by the Planck satellite.
The primordial magnetic fields (PMFs) produced in the early universe are expected to be the origin of the large-scale cosmic magnetic fields. The PMFs are considered to leave a footprint on the cosmic microwave background (CMB) anisotropies due to bo th the electromagnetic force and gravitational interaction. In this paper, we investigate how the PMFs affect the CMB anisotropies on smaller scales than the mean-free-path of the CMB photons. We solve the baryon Euler equation with Lorentz force due to the PMFs, and we show that the vector-type perturbations from the PMFs induce the CMB anisotropies below the Silk scale as $ell>3000$. Based on our calculations, we put a constraint on the PMFs from the combined CMB temperature anisotropies obtained by Planck and South Pole Telescope (SPT). We have found that the highly-resolved temperature anisotropies of the SPT 2017 bandpowers at $ell lesssim 8000$ favor the PMF model with a small scale-dependence. As a result, the Planck and SPTs joint-analysis puts a constraint on the PMF spectral index as $n_B<-1.14$ at 95% confidence level (C.L.), and this is more stringent compared with the Planck-only constraint $n_B<-0.28$. We show that the PMF strength normalized on the co-moving 1 Mpc scale is also tightly constrained as $B_{1mathrm{Mpc}}<1.5$ nG with Planck and SPT at 95% C.L., while $B_{1mathrm{Mpc}}<3.2$ nG only with the Planck data at 95% C.L. We also discuss the effects on the cosmological parameter estimate when including the SPT data and CMB anisotropies induced by the PMFs.
At high angular frequencies, beyond the damping tail of the primary power spectrum, the dominant contribution to the power spectrum of cosmic microwave background (CMB) temperature fluctuations is the thermal Sunyaev-Zeldovich (tSZ) effect. We invest igate various important statistical properties of the Sunyaev-Zeldovich maps, using well-motivated models for dark matter clustering to construct statistical descriptions of the tSZ effect to all orders enabling us to determine the entire probability distribution function (PDF). Any generic deterministic biasing scheme can be incorporated in our analysis and the effects of projection, biasing and the underlying density distribution can be analysed separately and transparently in this approach. We introduce the cumulant correlators as tools to analyse tSZ catalogs and relate them to corresponding statistical descriptors of the underlying density distribution. The statistics of hot spots in frequency-cleaned tSZ maps are also developed in a self-consistent way to an arbitrary order, to obtain results complementary to those found using the halo model. We also consider different beam sizes, to check the extent to which the PDF can be extracted from various observational configurations. The formalism is presented with two specific models for underlying matter clustering: (1) the hierarchical ansatz; and (2) the lognormal distribution. We find both models to be in very good agreement with the simulation results, though the lognormal model has an edge over the hierarchical model.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا