ﻻ يوجد ملخص باللغة العربية
This paper is concerned with the dynamics of an infinite-dimensional gradient system under small almost periodic perturbations. Under the assumption that the original autonomous system has a global attractor given as the union of unstable manifolds of a finite number of hyperbolic equilibrium solutions, we prove that the perturbed non-autonomous system has exactly the same number of almost periodic solutions. As a consequence, the pullback attractor of the perturbed system is given by the union of unstable manifolds of these finitely many almost periodic solutions. An application of the result to the Chafee-Infante equation is discussed.
In this paper, we introduce concepts of pathwise random almost periodic and almost automorphic solutions for dynamical systems generated by non-autonomous stochastic equations. These solutions are pathwise stochastic analogues of deterministic dynami
In this paper we investigate how many periodic attractors maps in a small neighbourhood of a given map can have. For this purpose we develop new tools which help to make uniform cross-ratio distortion estimates in a neighbourhood of a map with degenerate critical points.
This paper is devoted to the quantitative study of the attractive velocity of generalized attractors for infinite-dimensional dynamical systems. We introduce the notion of~$varphi$-attractor whose attractive speed is characterized by a general non-ne
In this paper, we discuss delayed periodic dynamical systems, compare capability of criteria of global exponential stability in terms of various $L^{p}$ ($1le p<infty$) norms. A general approach to investigate global exponential stability in terms of
In this paper, we use the variational approach to investigate recurrent properties of solutions for stochastic partial differential equations, which is in contrast to the previous semigroup framework. Consider stochastic differential equations with m