ترغب بنشر مسار تعليمي؟ اضغط هنا

Effect of Ambipolar Diffusion on the Non-linear Evolution of Magnetorotational Instability in Weakly Ionized Disks

168   0   0.0 ( 0 )
 نشر من قبل Xue-Ning Bai
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the role of ambipolar diffusion (AD) on the non-linear evolution of the MRI in protoplanetary disks using the strong coupling limit, which applies when the electron recombination time is much shorter than the orbital time. The effect of AD in this limit is characterized by the dimensionless number Am, the frequency of which neutral particles collide with ions normalized to the orbital frequency. We perform three-dimensional unstratified shearing-box simulations of the MRI over a wide range of Am as well as different magnetic field strengths and geometries. The saturation level of the MRI turbulence depends on the magnetic geometry and increases with the net magnetic flux. There is an upper limit to the net flux for sustained turbulence, corresponding to the requirement that the most unstable vertical wavelength be less than the disk scale height. Correspondingly, at a given Am, there exists a maximum value of the turbulent stress alpha_max. For Am<1, the largest stress is associated with a field geometry that has both net vertical and toroidal flux. In this case, we confirm the results of linear analyses that show the fastest growing mode has a non-zero radial wave number with growth rate exceeding the pure vertical field case. We find there is a very tight correlation between the turbulent stress (alpha) and the plasma beta=P_gas/P_mag~1/(2alpha) at the saturated state of the MRI turbulence regardless of field geometry, and alpha_max rapidly decreases with decreasing Am. In particular, we quote alpha_max~0.007 for Am=1 and alpha_max~0.0006 for Am=0.1.



قيم البحث

اقرأ أيضاً

Magnetorotational instability (MRI) has a potential to generate the vigorous turbulence in protoplanetary disks, although its turbulence strength and accretion stress remains debatable because of the uncertainty of MRI with low ionization fraction. W e focus on the heating of electrons by strong electric fields which amplifies nonideal magnetohydrodynamic effects. The heated electrons frequently collide with and stick to dust grains, which in turn decreases the ionization fraction and is expected to weaken the turbulent motion driven by MRI. In order to quantitatively investigate the nonlinear evolution of MRI including the electron heating, we perform magnetohydrodynamical simulation with the unstratified shearing box. We introduce a simple analytic resistivity model depending on the current density by mimicking resistivity given by the calculation of ionization. Our simulation confirms that the electron heating suppresses magnetic turbulence when the electron heating occurs with low current density. We find a clear correlation between magnetic stress and its current density, which means that the magnetic stress is proportional to the squared current density. When the turbulent motion is completely suppressed, laminar accretion flow is caused by ordered magnetic field. We give an analytical description of the laminar state by using a solution of linear perturbation equations with resistivity. We also propose a formula that successfully predicts the accretion stress in the presence of the electron heating.
The magnetorotational instability (MRI) drives vigorous turbulence in a region of protoplanetary disks where the ionization fraction is sufficiently high. It has recently been shown that the electric field induced by the MRI can heat up electrons and thereby affect the ionization balance in the gas. In particular, in a disk where abundant dust grains are present, the electron heating causes a reduction of the electron abundance, thereby preventing further growth of the MRI. By using the nonlinear Ohms law that takes into account electron heating, we investigate where in protoplanetary disks this negative feedback between the MRI and ionization chemistry becomes important. We find that the e-heating zone, the region where the electron heating limits the saturation of the MRI, extends out up to 80 AU in the minimum-mass solar nebula with abundant submicron-sized grains. This region is considerably larger than the conventional dead zone whose radial extent is $sim20$ AU in the same disk model. Scaling arguments show that the MRI turbulence in the e-heating zone should have a significantly lower saturation level. Submicron-sized grains in the e-heating zone are so negatively charged that their collisional growth is unlikely to occur. Our present model neglects ambipolar and Hall diffusion, but our estimate shows that ambipolar diffusion would also affect the MRI in the e-heating zone.
We study ambipolar diffusion in strongly magnetised neutron stars, with special focus on the effects of neutrino reaction rates and the impact of a superfluid/superconducting transition in the neutron star core. For axisymmetric magnetic field config urations, we determine the deviation from $beta-$equilibrium induced by the magnetic force and calculate the velocity of the slow, quasi-stationary, ambipolar drift. We study the temperature dependence of the velocity pattern and clearly identify the transition to a predominantly solenoidal flow. For stars without superconducting/superfluid constituents and with a mixed poloidal-toroidal magnetic field of typical magnetar strength, we find that ambipolar diffusion proceeds fast enough to have a significant impact on the magnetic field evolution only at low core temperatures, $T lesssim 1-2times10^8$ K. The ambipolar diffusion timescale becomes appreciably shorter when fast neutrino reactions are present, because the possibility to balance part of the magnetic force with pressure gradients is reduced. We also find short ambipolar diffusion timescales in the case of superconducting cores for $T lesssim 10^9$ K, due to the reduced interaction between protons and neutrons. In the most favourable scenario, with fast neutrino reactions and superconducting cores, ambipolar diffusion results in advection velocities of several km/kyr. This velocity can substantially reorganize magnetic fields in magnetar cores, in a way that can only be confirmed by dynamical simulations.
The vertical shear instability (VSI) is a robust phenomenon in irradiated protoplanetary disks (PPDs). While there is extensive literature on the VSI in the hydrodynamic limit, PPDs are expected to be magnetized and their extremely low ionization fra ctions imply that non-ideal magneto-hydrodynamic (MHD) effects should be properly considered. To this end, we present linear analyses of the VSI in magnetized disks with Ohmic resistivity. We primarily consider toroidal magnetic fields, which are likely to dominate the field geometry in PPDs. We perform vertically global and radially local analyses to capture characteristic VSI modes with extended vertical structures. To focus on the effect of magnetism, we use a locally isothermal equation of state. We find that magnetism provides a stabilizing effect to dampen the VSI, with surface modes, rather than body modes, being the first to vanish with increasing magnetization. Subdued VSI modes can be revived by Ohmic resistivity, where sufficient magnetic diffusion overcome magnetic stabilization, and hydrodynamic results are recovered. We also briefly consider poloidal fields to account for the magnetorotational instability (MRI), which may develop towards surface layers in the outer parts of PPDs. The MRI grows efficiently at small radial wavenumbers, in contrast to the VSI. When resistivity is considered, we find the VSI dominates over the MRI for Ohmic Els{a}sser numbers $lesssim 0.09$ at plasma beta parameter $beta_Z sim 10^4$.
123 - Zhaohuan Zhu , James M. Stone , 2014
We study dust transport in turbulent protoplanetary disks using three-dimensional global unstratified magnetohydrodynamic (MHD) simulations including Lagrangian dust particles. The turbulence is driven by the magnetorotational instability (MRI) with either ideal or non-ideal MHD that includes ambipolar diffusion (AD). In ideal MHD simulations, the surface density evolution (except for dust that drifts fastest), turbulent diffusion, and vertical scale height of dust can all be reproduced by simple one-dimensoinal and/or analytical models. However, in AD dominated simulations which simulate protoplanetary disks beyond 10s of AU, the vertical scale height of dust is larger than previously predicted. To understand this anomaly in more detail, we carry out both unstratified and stratified local shearing box simulations with Lagrangian particles, and find that turbulence in AD dominated disks has very different properties (e.g., temporal autocorrelation functions and power spectra) than turbulence in ideal MHD disks, which leads to quite different particle diffusion efficiency. For example, MRI turbulence with AD has a longer correlation time for the vertical velocity, which causes significant vertical particle diffusion and large dust scale height. In ideal MHD the Schmidt numbers ($Sc$) for radial and vertical turbulent diffusion are $Sc_{r}sim 1$ and $Sc_{z}gtrsim 3$, but in the AD dominated regime both $Sc_{r}$ and $Sc_{z}$ are $lesssim 1$. Particle concentration in pressure bumps induced by MRI turbulence has also been studied. Since non-ideal MHD effects dominate most regions in protoplanetary disks, our study suggests that modeling dust transport in turbulence driven by MRI with non-ideal MHD effects is important for understanding dust transport in realistic protoplanetary disks.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا