ترغب بنشر مسار تعليمي؟ اضغط هنا

Systematic analysis of SNR in bipartite Ghost Imaging with classical and quantum light

175   0   0.0 ( 0 )
 نشر من قبل Marco Genovese
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a complete and exhaustive theory of signal-to-noise-ratio in bipartite ghost imaging with classical (thermal) and quantum (twin beams) light. The theory is compared with experiment for both twin beams and thermal light in a certain regime of interest.



قيم البحث

اقرأ أيضاً

High-resolution ghost image and ghost diffraction experiments are performed by using a single source of thermal-like speckle light divided by a beam splitter. Passing from the image to the diffraction result solely relies on changing the optical setu p in the reference arm, while leaving untouched the object arm. The product of spatial resolutions of the ghost image and ghost diffraction experiments is shown to overcome a limit which was formerly thought to be achievable only with entangled photons.
82 - Dongyu Liu 2021
Non-local point-to-point correlations between two photons have been used to produce ghost images without placing the camera towards the object. Here we theoretically demonstrated and analyzed the advantage of non-Gaussian quantum light in improving t he image quality of ghost imaging system over traditional Gaussian light source. For any squeezing degree, the signal-to-noise ratio (SNR) of the ghost image can be enhanced by the non-Gaussian operations of photon addition and subtraction on the two-mode squeezed light source. We find striking evidence that using non-Gaussian coherent operations, the SNR can be promoted to a high level even within the extremely weak squeezing regime. The resulting insight provides new experimental recipes of quantum imaging using non-Gaussian light for illumination.
233 - Lixiang Chen 2016
There has been an intense debate on the quantum versus classical origin of ghost imaging with a thermal light source over the last two decades. A lot of distinguished work has contributed to this topic, both theoretically and experimentally, however, to this day this quantum-classical dilemma still persists. Here we formulate for the first time a density matrix in the photon orbital angular momentum (OAM) Hilbert space to fully characterize the two-arm ghost imaging system with the basic definition of thermal light sources. Our formulation offers a mathematically precise method to describe the formation of a ghost image in a nonlocal fashion. More importantly, it provides a more physically intuitive picture to reveal the quantumness hidden in the thermal ghost imaging, and therefore, presenting a sound resolution to the ongoing quantum-classical dilemma, which distinguishes the quantum correlations beyond entanglement in terms of geometric measure of discord. Our work also suggests further studies of using thermal multi-photon OAM states directly to implement some quantum information tasks.
Fourier analysis of ghost imaging (FAGI) is proposed in this paper to analyze the properties of ghost imaging with thermal light sources. This new theory is compatible with the general correlation theory of intensity fluctuation and could explain som e amazed phenomena. Furthermore we design a series of experiments to verify the new theory and investigate the inherent properties of ghost imaging.
We investigate the effect of turbulence on quantum ghost imaging. We use entangled photons and demonstrate that for a novel experimental configuration the effect of turbulence can be greatly diminished. By decoupling the entangled photon source from the ghost imaging central image plane, we are able to dramatically increase the ghost image quality. When imaging a test pattern through turbulence, this method increased the imaged pattern visibility from V = 0.14 +/- 0.04 to V = 0.29 +/- 0.04.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا