ترغب بنشر مسار تعليمي؟ اضغط هنا

High-Intensity and High-Brightness Source of Moderated Positrons Using a Brilliant gamma Beam

223   0   0.0 ( 0 )
 نشر من قبل Peter Thirolf
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Presently large efforts are conducted towards the development of highly brilliant gamma beams via Compton back scattering of photons from a high-brilliance electron beam, either on the basis of a normal-conducting electron linac or a (superconducting) Energy Recovery Linac (ERL). Particularly ERLs provide an extremely brilliant electron beam, thus enabling to generate highest-quality gamma beams. A 2.5 MeV gamma beam with an envisaged intensity of 10^15 s^-1, as ultimately envisaged for an ERL-based gamma-beam facility, narrow band width (10^-3), and extremely low emittance (10^-4 mm^2 mrad^2) offers the possibility to produce a high-intensity bright polarized positron beam. Pair production in a face-on irradiated W converter foil (200 micron thick, 10 mm long) would lead to the emission of 2 x 10^13 (fast) positrons per second, which is four orders of magnitude higher compared to strong radioactive ^22Na sources conventionally used in the laboratory.Using a stack of converter foils and subsequent positron moderation, a high-intensity low-energy beam of moderated positrons can be produced. Two different source setups are presented: a high-brightness positron beam with a diameter as low as 0.2 mm, and a high-intensity beam of 3 x 10^11 moderated positrons per second. Hence, profiting from an improved moderation efficiency, the envisaged positron intensity would exceed that of present high-intensity positron sources by a factor of 100.



قيم البحث

اقرأ أيضاً

56 - T. Masuda , A. Yoshimi , 2016
We propose a new scheme of producing intense neutron beam whose yields exceed those of existing facilities by many orders of magnitude. This scheme uses the recently proposed photon beam extracted from circulating quantum ions, which is directed to a deuteron target for photo-disintegration. The calculated neutron energy spectrum is nearly flat down to neV range, except a threshold rise and its adjacent wide structure. Hence, there exists a possibility of directly using sub-eV neutrons without a moderator. We shall have brief comments on promising particle physics applications using this large yield of neutron.
106 - M. Lantz , D. Gorelov , A. Jokinen 2013
The upgraded IGISOL facility with JYFLTRAP, at the accelerator laboratory of the University of Jyvaskyla, has been supplied with a new cyclotron which will provide protons of the order of 100 {mu}A with up to 30 MeV energy, or deuterons with half the energy and intensity. This makes it an ideal place for measurements of neutron-induced fission products from various actinides, in view of proposed future nuclear fuel cycles. The groups at Uppsala University and University of Jyvaskyla are working on the design of a neutron converter that will be used as neutron source in fission yield studies. The design is based on simulations with Monte Carlo codes and a benchmark measurement that was recently performed at The Svedberg Laboratory in Uppsala. In order to obtain a competitive count rate the fission targets will be placed very close to the neutron converter. The goal is to have a flexible design that will enable the use of neutron fields with different energy distributions. In the present paper, some considerations for the design of the neutron converter will be discussed, together with different scenarios for which fission targets and neutron energies to focus on.
133 - F.G. Garcia , W. Pellico 2014
The 40-year-old Fermilab Proton Source machines, constituted by the Pre-Injector, Linac and the synchrotron Booster, have been the workhorse of the Fermi National Accelerator Laboratory (Fermilab). During this time, the High Energy Physics Program ha s demanded an increase in proton throughput, especially during the past decade with the beginning of the neutrino program at Fermilab. In order to achieve a successful program, major upgrades and changes were made in Booster. Once again, the Proton Source has been charged to double their beam throughput, while maintain the present residual activation levels, to meet the laboratory Intensity Frontier program goals until new machines are built and operational to replace the Proton Source machines. This paper discusses the present performance of Booster and the plans involved in reaching even higher intensities.
239 - Bernhard Lauss 2012
Ultracold neutrons (UCN) can be stored in suitable bottles and observed for several hundreds of seconds. Therefore UCN can be used to study in detail the fundamental properties of the neutron. A new user facility providing ultracold neutrons for fund amental physics research has been constructed at the Paul Scherrer Institute, the PSI UCN source. Assembly of the facility finished in December 2010 with the first production of ultracold neutrons. Operation approval was received in June 2011. We give an overview of the source and the status at startup.
215 - Bernhard Lauss 2010
Commissioning of the new high-intensity ultracold neutron (UCN) source at the Paul Scherrer Institut (PSI) has started in 2009. The design goal of this new generation high intensity UCN source is to surpass by a factor of ~100 the current ultracold n eutron densities available for fundamental physics research, with the greatest thrust coming from the search for a neutron electric dipole moment. The PSI UCN source is based on neutron production via proton induced lead spallation, followed by neutron thermalization in heavy water and neutron cooling in a solid deuterium crystal to cold and ultracold energies. A successful beam test with up to 2 mA proton beam on the spallation target was conducted recently. Most source components are installed, others being finally mounted. The installation is on the track for the first cool-down and UCN production in 2010.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا