ﻻ يوجد ملخص باللغة العربية
This paper revisits earlier work on complex classical mechanics in which it was argued that when the energy of a classical particle in an analytic potential is real, the particle trajectories are closed and periodic, but that when the energy is complex, the classical trajectories are open. Here it is shown that there is a discrete set of eigencurves in the complex-energy plane for which the particle trajectories are closed and periodic.
The concept of duality reflects a link between two seemingly different physical objects. An example in quantum mechanics is a situation where the spectra (or their parts) of two Hamiltonians go into each other under a certain transformation. We term
We consider classical gauge theory on a principal bundle P->X in a case of spontaneous symmetry breaking characterized by the reduction of a structure group G of P->X to its closed subgroup H. This reduction is ensured by the existence of global sect
This paper examines the complex trajectories of a classical particle in the potential V(x)=-cos(x). Almost all the trajectories describe a particle that hops from one well to another in an erratic fashion. However, it is shown analytically that there
We extend duality between the quantum integrable Gaudin models with boundary and the classical Calogero-Moser systems associated with root systems of classical Lie algebras $B_N$, $C_N$, $D_N$ to the case of supersymmetric ${rm gl}(m|n)$ Gaudin model
We consider classical gauge theory with spontaneous symmetry breaking on a principal bundle $Pto X$ whose structure group $G$ is reducible to a closed subgroup $H$, and sections of the quotient bundle $P/Hto X$ are treated as classical Higgs fields.