ﻻ يوجد ملخص باللغة العربية
The Levi-Malcev decomposition is applied to bosonic models of quantum mechanics based on unitary Lie algebras u(2), u(2)+u(2), u(3) and u(4) to clearly disentangle semisimple subalgebras. The theory of weighted Dynkin diagrams is then applied to identify conjugacy classes of relevant A_1 subalgebras allowing to introduce a complete classification of new angular momentum non conserving (AMNC) dynamical symmetries. The tensor analysis of the whole algebra based on the new angular momentum operators reveals unexpected spinors to occur in purely bosonic models. The new chains of subalgebra can be invoked to set up ANMC bases for diagonalization.
We present a new technique for transferring momentum and velocity between particles and grid with Particle-In-Cell (PIC) calculations which we call Affine-Particle-In-Cell (APIC). APIC represents particle velocities as locally affine, rather than loc
Nineteen classical superintegrable systems in two-dimensional non-Euclidean spaces are shown to possess hidden symmetries leading to their linearization. They are the two Perlick systems [A. Ballesteros, A. Enciso, F.J. Herranz and O. Ragnisco, Class
It is shown that when the gauge-invariant Bohr-Rosenfeld commutators of the free electromagnetic field are applied to the expressions for the linear and angular momentum of the electromagnetic field interpreted as operators then, in the absence of el
This paper provides a class of feedback controllers that guarantee global stability of quantum angular momentum systems. The systems are in general finite dimensions and the stability is around an assigned eigenstate of observables with a specific fo
Analytical solutions of the Schrodinger equation are obtained for some diatomic molecular potentials with any angular momentum. The energy eigenvalues and wave functions are calculated exactly. The asymptotic form of the equation is also considered. Algebraic method is used in the calculations.