ترغب بنشر مسار تعليمي؟ اضغط هنا

The redshift and nature of AzTEC/COSMOS 1: A starburst galaxy at z=4.6

112   0   0.0 ( 0 )
 نشر من قبل Vernesa Smolcic
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Based on broad/narrow-band photometry and Keck DEIMOS spectroscopy we report a redshift of z=4.64-0.08+0.06 for AzTEC/COSMOS 1, the brightest sub-mm galaxy in the AzTEC/COSMOS field. In addition to the COSMOS-survey X-ray to radio data, we report observations of the source with Herschel/PACS (100, 160 micron), CSO/SHARC II (350 micron), CARMA and PdBI (3 mm). We do not detect CO(5-4) line emission in the covered redshift ranges, 4.56-4.76 (PdBI/CARMA) and 4.94-5.02 (CARMA). If the line is within this bandwidth, this sets 3sigma upper limits on the gas mass to <~8x10^9 M_Sol and <~5x10^10 M_Sol, respectively (assuming similar conditions as observed in z~2 SMGs). This could be explained by a low CO-excitation in the source. Our analysis of the UV-IR spectral energy distribution of AzTEC 1 shows that it is an extremely young (<~50 Myr), massive (M*~10^11 M_Sol), but compact (<~2 kpc) galaxy forming stars at a rate of ~1300 M_Sol/yr. Our results imply that AzTEC 1 is forming stars in a gravitationally bound regime in which gravity prohibits the formation of a superwind, leading to matter accumulation within the galaxy and further generations of star formation.



قيم البحث

اقرأ أيضاً

Analyses of high-redshift ultraluminous infrared (IR) galaxies traditionally use the observed optical to submillimeter spectral energy distribution (SED) and estimates of the dynamical mass as observational constraints to derive the star formation ra te (SFR), the stellar mass, and age of these objects. An important observational constraint neglected in the analysis is the mass of dust giving rise to the IR emission. In this paper we add this constraint to the analysis of AzTEC-3. Adopting an upper limit to the mass of stars and a bolometric luminosity for this object, we construct stellar and chemical evolutionary scenarios, constrained to produce the inferred dust mass and observed luminosity before the associated stellar mass exceeds the observational limit. We find that the model with a Top Heavy IMF provided the most plausible scenario consistent with the observational constraints. In this scenario the dust formed over a period of ~200 Myr, with a SFR of ~500 Msun/yr. These values for the age and SFR in AzTEC-3 are significantly higher and lower, respectively, from those derived without the dust mass constraint. However, this scenario is not unique, and others cannot be completely ruled out because of the prevailing uncertainties in the age of the galaxy, its bolometric luminosity, and its stellar and dust masses. A robust result of our models is that all scenarios require most of the radiating dust mass to have been accreted in molecular clouds. Our new procedure highlights the importance of a multiwavelength approach, and of the use of dust evolution models in constraining the age and the star formation activity and history in galaxies.
Massive present-day early-type (elliptical and lenticular) galaxies probably gained the bulk of their stellar mass and heavy elements through intense, dust-enshrouded starbursts - that is, increased rates of star formation - in the most massive dark matter halos at early epochs. However, it remains unknown how soon after the Big Bang such massive starburst progenitors exist. The measured redshift distribution of dusty, massive starbursts has long been suspected to be biased low in redshift owing to selection effects, as confirmed by recent findings of systems out to redshift z~5. Here we report the identification of a massive starburst galaxy at redshift 6.34 through a submillimeter color-selection technique. We unambiguously determined the redshift from a suite of molecular and atomic fine structure cooling lines. These measurements reveal a hundred billion solar masses of highly excited, chemically evolved interstellar medium in this galaxy, which constitutes at least 40% of the baryonic mass. A maximum starburst converts the gas into stars at a rate more than 2,000 times that of the Milky Way, a rate among the highest observed at any epoch. Despite the overall downturn of cosmic star formation towards the highest redshifts, it seems that environments mature enough to form the most massive, intense starbursts existed at least as early as 880 million years after the Big Bang.
We investigate how the shape of the galaxy two-point correlation function as measured in the zCOSMOS survey depends on local environment, quantified in terms of the density contrast on scales of 5 Mpc/h. We show that the flat shape previously observe d at redshifts between z=0.6 and z=1 can be explained by this volume being simply 10% over-abundant in high-density environments, with respect to a Universal density probability distribution function. When galaxies corresponding to the top 10% tail of the distribution are excluded, the measured w_p(r_p) steepens and becomes indistinguishable from LCDM predictions on all scales. This is the same effect recognised by Abbas & Sheth in the SDSS data at z~0 and explained as a natural consequence of halo-environment correlations in a hierarchical scenario. Galaxies living in high-density regions trace dark matter halos with typically higher masses, which are more correlated. If the density probability distribution function of the sample is particularly rich in high-density regions because of the variance introduced by its finite size, this produces a distorted two-point correlation function. We argue that this is the dominant effect responsible for the observed peculiar clustering in the COSMOS field.
229 - M. D. Lehnert 2010
Galaxies had their most significant impact on the Universe when they assembled their first generations of stars. Energetic photons emitted by young, massive stars in primeval galaxies ionized the intergalactic medium surrounding their host galaxies, cleared sight-lines along which the light of the young galaxies could escape, and fundamentally altered the physical state of the intergalactic gas in the Universe continuously until the present day. Observations of the Cosmic Microwave Background, and of galaxies and quasars at the highest redshifts, suggest that the Universe was reionised through a complex process that was completed about a billion years after the Big Bang, by redshift z~6. Detecting ionizing Ly-alpha photons from increasingly distant galaxies places important constraints on the timing, location and nature of the sources responsible for reionisation. Here we report the detection of Ly-a photons emitted less than 600 million years after the Big Bang. UDFy-38135539 is at a redshift z=8.5549+-0.0002, which is greater than those of the previously known most distant objects, at z=8.2 and z=6.97. We find that this single source is unlikely to provide enough photons to ionize the volume necessary for the emission line to escape, requiring a significant contribution from other, probably fainter galaxies nearby.
We present results of a statistical study of the cosmic evolution of the mass dependent major-merger rate since z=1. A stellar mass limited sample of close major-merger pairs (the CPAIR sample) was selected from the archive of the COSMOS survey. Pair fractions at different redshifts derived using the CPAIR sample and a local K-band selected pair sample show no significant variations with stellar mass. The pair fraction exhibits moderately strong cosmic evolution, with the best-fitting evolutionary index m=2.2+-0.2. The best-fitting function for the merger rate implies that galaxies with stellar mass between 1E+10 -- 3E+11 M_sun have undergone 0.5 -- 1.5 major-mergers since z=1. Our results show that, for massive galaxies at z<1, major mergers involving star forming galaxies (i.e. wet and mixed mergers) can account for the formation of both ellipticals and red quiescent galaxies (RQGs). On the other hand, major mergers cannot be responsible for the formation of most low mass ellipticals and RQGs. Our quantitative estimates indicate that major mergers have significant impact on the stellar mass assembly of the most massive galaxies, but for less massive galaxies the stellar mass assembly is dominated by the star formation. Comparison with the mass dependent (U)LIRG rates suggests that the frequency of major-merger events is comparable to or higher than that of (U)LIRGs.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا