Bethe approximation for a system of hard rigid rods: the random locally tree-like layered lattice


الملخص بالإنكليزية

We study the Bethe approximation for a system of long rigid rods of fixed length k, with only excluded volume interaction. For large enough k, this system undergoes an isotropic-nematic phase transition as a function of density of the rods. The Bethe lattice, which is conventionally used to derive the self-consistent equations in the Bethe approximation, is not suitable for studying the hard-rods system, as it does not allow a dense packing of rods. We define a new lattice, called the random locally tree-like layered lattice, which allows a dense packing of rods, and for which the approximation is exact. We find that for a 4-coordinated lattice, k-mers with k>=4 undergo a continuous phase transition. For even coordination number q>=6, the transition exists only for k >= k_{min}(q), and is first order.

تحميل البحث