ترغب بنشر مسار تعليمي؟ اضغط هنا

Analytical and experimental characterization of a miniature calorimetric sensor in pulsatile flow

101   0   0.0 ( 0 )
 نشر من قبل Hanneke Gelderblom
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The behaviour of a miniature calorimetric sensor, which is under consideration for catheter-based coronary artery flow assessment, is investigated in both steady and pulsatile tube flow. The sensor is composed of a heating element operated at constant power, and two thermopiles that measure flow-induced temperature differences over the sensor surface. An analytical sensor model is developed, which includes axial heat conduction in the fluid and a simple representation of the solid wall, assuming a quasi-steady sensor response to the pulsatile flow. To reduce the mathematical problem, described by a two-dimensional advection-diffusion equation, a spectral method is applied. A Fourier transform is then used to solve the resulting set of ordinary differential equations and an analytical expression for the fluid temperature is found. To validate the analytical model, experiments with the sensor mounted in a tube have been performed in steady and pulsatile water flow with various amplitudes and Strouhal numbers. Experimental results are generally in good agreement with theory and show a quasi-steady sensor response in the coronary flow regime. The model can therefore be used to optimize the sensor design for coronary flow assessment.



قيم البحث

اقرأ أيضاً

Considered here is the derivation of partial differential equations arising in pulsatile flow in pipes with viscoelastic walls. The equations are asymptotic models describing the propagation of long-crested pulses in pipes with cylindrical symmetry. Additional effects due to viscous stresses in bio-fluids are also taken into account. The effects of viscoelasticity of the vessels on the propagation of solitary and periodic waves in a vessel of constant radius are being explored numerically.
The asymptotic derivation of a new family of one-dimensional, weakly nonlinear and weakly dispersive equations that model the flow of an ideal fluid in an elastic vessel is presented. Dissipative effects due to the viscous nature of the fluid are als o taken into account. The new models validate by asymptotic reasoning other non-dispersive systems of equations that are commonly used, and improve other nonlinear and dispersive mathematical models derived to describe the blood flow in elastic vessels. The new systems are studied analytically in terms of their basic characteristic properties such as the linear dispersion characteristics, symmetries, conservation laws and solitary waves. Unidirectional model equations are also derived and analysed in the case of vessels of constant radius. The capacity of the models to be used in practical problems is being demonstrated by employing a particular system with favourable properties to study the blood flow in a large artery. Two different cases are considered: A vessel with constant radius and a tapered vessel. Significant changes in the flow can be observed in the case of the tapered vessel.
142 - K. Liu , F. Stefani , N. Weber 2019
In a cylindrical container filled with an eutectic GaInSn alloy, an electro-vortex flow (EVF) is generated by the interaction of a non-uniform current with its own magnetic field. In this paper, we investigate the EVF phenomenon numerically and exper imentally. Ultrasound Doppler Velocimetry (UDV) is applied to measure the velocity field in a cylindrical vessel. Second, we enhance an old numerical solver by taking into account the effect of Joule heating, and employ it for the numerical simulation of the EVF experiment. Special focus is laid on the role of the magnetic field, which is the combination of the current induced magnetic field and the external geomagnetic field. For getting a higher computational efficiency, the so-called parent-child mesh technique is applied in OpenFOAM when computing the electric potential, the current density and the temperature in the coupled solid-liquid conductor system. The results of the experiment are in good agreement with those of the simulation. This study may help to identify the factors that are essential for the EVF phenomenon, and for quantifying its role in liquid metal batteries.
Electrohydrodynamic (EHD) flow induced by planar corona discharge in the wall boundary layer region is investigated experimentally and via a multiphysics computational model. The EHD phenomena has many potential engineering applications, its optimiza tion requires a mechanistic understanding of the ion and flow transport. The corona EHD actuator consisting of two electrodes located in the wall boundary layer creates an EHD driven wall jet. The applied voltage between the electrodes is varied and the resulting effects in the charge density and flow field are measured. Constant current hotwire anemometry is used to measure velocity profile. The airflow near the wall acts a jet and it reaches a maximum of 1.7 m/s with an energy conversion efficiency of ~2%. The velocity decreases sharply in the normal direction. Multiphysics numerical model couples ion transport equation and the Navier Stokes equations to solve for the spatiotemporal distribution of electric field, charge density and flow field. The numerical results match experimental data shedding new insights into mass, charge and momentum transport phenomena. The EHD driven flow can be applied to flow control strategies and design of novel particle collectors.
An electrohydrodynamic (EHD) flow in a point-to-ring corona configuration is investigated experimentally, analytically and via a multiphysics numerical model. The interaction between the accelerated ions and the neutral gas molecules is modeled as an external body force in the Navier-Stokes equation (NSE). The gas flow characteristics are solved from conservation principles with spectral methods. The analytical and numerical simulation results are compared against experimental measurements of the cathode voltage, ion concentration, and velocity profiles. A nondimensional parameter, X, is formulated as the ratio of the local electric force to the inertial term in the NSE. In the region of X > 1, the electric force dominates the flow dynamics, while in the X << 1 region, the balance of viscous and inertial terms yields traditional pipe flow characteristics.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا