ترغب بنشر مسار تعليمي؟ اضغط هنا

To what extent are canonical and coherent state quantizations physically equivalent?

130   0   0.0 ( 0 )
 نشر من قبل Herve Bergeron
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate the consistency of coherent state (or Berezin-Klauder-Toeplitz, or anti-Wick) quantization in regard to physical observations in the non- relativistic (or Galilean) regime. We compare this procedure with the canonical quantization (on both mathematical and physical levels) and examine whether they are or not equivalent in their predictions: is it possible to dif- ferentiate them on a strictly physical level? As far as only usual dynamical observables (position, momentum, energy, ...) are concerned, the quantization through coherent states is proved to be a perfectly valid alternative. We successfully put to the test the validity of CS quantization in the case of data obtained from vibrational spectroscopy (data that allowed to validate canonical quantization in the early period of Quantum Mechanics).



قيم البحث

اقرأ أيضاً

We prove that any two general probabilistic theories (GPTs) are entangleable, in the sense that their composite exhibits either entangled states or entangled measurements, if and only if they are both non-classical, meaning that neither of the state spaces is a simplex. This establishes the universal equivalence of the (local) superposition principle and the existence of global entanglement, valid in a fully theory-independent way. As an application of our techniques, we show that all non-classical GPTs exhibit a strong form of incompatibility of states and measurements, and use this to construct a version of the BB84 protocol that works in any non-classical GPT.
Signal analysis is built upon various resolutions of the identity in signal vector spaces, e.g. Fourier, Gabor, wavelets, etc. Similar resolutions are used as quantizers of functions or distributions, paving the way to a time-frequency or time-scale quantum formalism and revealing interesting or unexpected features. Extensions to classical electromagnetism viewed as a quantum theory for waves and not for photons are mentioned.
By using a coherent state quantization of paragrassmann variables, operators are constructed in finite Hilbert spaces. We thus obtain in a straightforward way a matrix representation of the paragrassmann algebra. This algebra of finite matrices reali zes a deformed Weyl-Heisenberg algebra. The study of mean values in coherent states of some of these operators lead to interesting conclusions.
146 - D. A. Trifonov 2012
Nonlinear fermions of degree $n$ ($n$-fermions) are introduced as particles with creation and annihilation operators obeying the simple nonlinear anticommutation relation $AA^dagger + {A^dagger}^n A^n = 1$. The ($n+1$)-order nilpotency of these opera tors follows from the existence of unique $A$-vacuum. Supposing appropreate ($n+1$)-order nilpotent para-Grassmann variables and integration rules the sets of $n$-fermion number states, right and left ladder operator coherent states (CS) and displacement-operator-like CS are constructed. The $(n+1)times(n+1)$ matrix realization of the related para-Grassmann algebra is provided. General $(n+1)$-order nilpotent ladder operators of finite dimensional systems are expressed as polynomials in terms of $n$-fermion operators. Overcomplete sets of (normalized) right and left eigenstates of such general ladder operators are constructed and their properties briefly discussed.
We study truncated Bose operators in finite dimensional Hilbert spaces. Spin coherent states for the truncated Bose operators and canonical coherent states for Bose operators are compared. The Lie algebra structure and the spectrum of the truncated Bose operators are discussed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا