ترغب بنشر مسار تعليمي؟ اضغط هنا

X-ray bursts and superbursts - recent developments

194   0   0.0 ( 0 )
 نشر من قبل Jean in 't Zand
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Jean in t Zand




اسأل ChatGPT حول البحث

The past decade and a half has seen many interesting new developments in X-ray burst research, both observationally and theoretically. New phenomena were discovered, such as burst oscillations and superbursts, and new regimes of thermonuclear burning identified. An important driver of the research with present and future instrumentation in the coming years is the pursuit of fundamental neutron star parameters. However, several other more direct questions are also in dire need of an answer. For instance, how are superbursts ignited and why do burst oscillations exist in burst tails? We briefly review recent developments and discuss the role that MAXI can play. Thanks to MAXIs large visibility window and large duty cycle, it is particularly well suited to investigate the recurrence of rare long duration bursts such as superbursts. An exploratory study of MAXI data is briefly presented.



قيم البحث

اقرأ أيضاً

Type-I X-ray bursts arise from unstable thermonuclear burning of accreted fuel on the surface of neutron stars. In this chapter we review the fundamental physics of the burning processes, and summarise the observational, numerical, and nuclear experi mental progress over the preceding decade. We describe the current understanding of the conditions that lead to burst ignition, and the influence of the burst fuel on the observational characteristics. We provide an overview of the processes which shape the burst X-ray spectrum, including the observationally elusive discrete spectral features. We report on the studies of timing behaviour related to nuclear burning, including burst oscillations and mHz quasi-periodic oscillations. We describe the increasing role of nuclear experimental physics in the interpretation of astrophysical data and models. We survey the simulation projects that have taken place to date, and chart the increasing dialogue between modellers, observers, and nuclear experimentalists. Finally, we identify some open problems with prospects of a resolution within the timescale of the next such review.
96 - Jean in t Zand 2017
Superbursts were discovered at the beginning of this millennium. Just like type-I X-ray bursts, they are thought to be due to thermonuclear shell flashes on neutron stars, only igniting much deeper. With respect to type-I bursts, they last 10$^3$ tim es longer, are 10$^3$ as rare, ignite 10$^3$ times deeper (in column depth) and are thought to be fueled by carbon instead of hydrogen and helium. Observationally, they are sometimes hard to distinguish from intermediate duration bursts which are due to pure helium flashes on cold neutron stars. So far, 26 superbursts have been detected from 15 neutron stars in low-mass X-ray binaries that also exhibit type-I bursts. They are very difficult to catch and only 2 have been measured with highly sensitive instrumentation. Superbursts are sensitive probes of the neutron star crust and the accretion disk. The superburst phenomenon is not fully understood. Questions remain about the nature of the fuel, the collection of that fuel and the ignition conditions. The current state of affairs is reviewed and possible resolutions that lay ahead in the future discussed.
We report nine long X-ray bursts from neutron stars, detected with Monitor of All-sky X-ray Image (MAXI). Some of these bursts lasted for hours, and hence are qualified as superbursts, which are prolonged thermonuclear flashes on neutron stars and ar e relatively rare events. MAXI observes roughly 85% of the whole sky every 92 minutes in the 2-20 keV energy band, and has detected nine bursts with a long e-folding decay time, ranging from 0.27 to 5.2 hours, since its launch in 2009 August until 2015 August. The majority of the nine events were found to originate from transient X-ray sources. The persistent luminosities of the sources, when these prolonged bursts were observed, were lower than 1% of the Eddington luminosity for five of them and lower than 20% for the rest. This trend is contrastive to the 18 superbursts observed before MAXI, all but two of which originated from bright persistent sources. The distribution of the total emitted energy, i.e., the product of e-folding time and luminosity, of these bursts clusters around $10^{41}$-$10^{42}$ erg, whereas either of the e-folding time and luminosity ranges for an order of magnitude. Among the nine events, two were from 4U 1850-086 during the phases of relatively low persistent-flux, whereas it usually exhibits standard short X-ray bursts during outbursts.
A review of the present status, recent enhancements, and applicability of the SIESTA program is presented. Since its debut in the mid-nineties, SIESTAs flexibility, efficiency and free distribution has given advanced materials simulation capabilities to many groups worldwide. The core methodological scheme of SIESTA combines finite-support pseudo-atomic orbitals as basis sets, norm-conserving pseudopotentials, and a real-space grid for the representation of charge density and potentials and the computation of their associated matrix elements. Here we describe the more recent implementations on top of that core scheme, which include: full spin-orbit interaction, non-repeated and multiple-contact ballistic electron transport, DFT+U and hybrid functionals, time-dependent DFT, novel reduced-scaling solvers, density-functional perturbation theory, efficient Van der Waals non-local density functionals, and enhanced molecular-dynamics options. In addition, a substantial effort has been made in enhancing interoperability and interfacing with other codes and utilities, such as Wannier90 and the second-principles modelling it can be used for, an AiiDA plugin for workflow automatization, interface to Lua for steering SIESTA runs, and various postprocessing utilities. SIESTA has also been engaged in the Electronic Structure Library effort from its inception, which has allowed the sharing of various low level libraries, as well as data standards and support for them, in particular the PSML definition and library for transferable pseudopotentials, and the interface to the ELSI library of solvers. Code sharing is made easier by the new open-source licensing model of the program. This review also presents examples of application of the capabilities of the code, as well as a view of on-going and future developments.
A new era in radioastronomy will begin with the upcoming large-scale surveys planned at the Australian Square Kilometre Array Pathfinder (ASKAP). ASKAP started its Early Science program in October 2017 and several target fields were observed during t he array commissioning phase. The SCORPIO field was the first observed in the Galactic Plane in Band 1 (792-1032 MHz) using 15 commissioned antennas. The achieved sensitivity and large field of view already allow to discover new sources and survey thousands of existing ones with improved precision with respect to previous surveys. Data analysis is currently ongoing to deliver the first source catalogue. Given the increased scale of the data, source extraction and characterization, even in this Early Science phase, have to be carried out in a mostly automated way. This process presents significant challenges due to the presence of extended objects and diffuse emission close to the Galactic Plane. In this context we have extended and optimized a novel source finding tool, named CAESAR , to allow extraction of both compact and extended sources from radio maps. A number of developments have been done driven by the analysis of the SCORPIO map and in view of the future ASKAP Galactic Plane survey. The main goals are the improvement of algorithm performances and scalability as well as of software maintainability and usability within the radio community. In this paper we present the current status of CAESAR and report a first systematic characterization of its performance for both compact and extended sources using simulated maps. Future prospects are discussed in light of the obtained results.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا