ﻻ يوجد ملخص باللغة العربية
To provide an empirical calibration relation in order to convert Lick indices into abundances for the integrated light of old, simple stellar populations for a large range in the observed [Fe/H] and [alpha/Fe]. This calibration supersedes the previously adopted ones because it is be based on the real abundance pattern of the stars instead of the commonly adopted metallicity scale derived from the colours. We carried out a long-slit spectroscopic study of 23 Galactic globular cluster for which detailed chemical abundances in stars have been recently measured. The line-strength indices, as coded by the Lick system and by Serven et al. (2005), were measured in low-resolution integrated spectra of the GC light. The results were compared to average abundances and abundance ratios in stars taken from the compilation by Pritzl et al. (2005) as well as to synthetic models. Fe-related indices grow linearly as a function of [Fe/H] for [Fe/H]>-2. Mg-related indices respond in a similar way to [Mg/H] variations, however Mgb turns out to be a less reliable metallicity indicator for [Z/H]<-1.5 . Despite the known Mg overabundance with respect to Fe in GC stars, it proved impossible to infer a mean [Mg/Fe] for integrated spectra that correlates with the resolved stars properties, because the sensitivity of the indices to [Mg/Fe] is smaller at lower metallicities. We present empirical calibrations for Ca, TiO, Ba and Eu indices as well as the measurements of H_alpha and NaD.
We report on the extent of the effects of the Milky Ways gravitational field in shaping the structural parameters and internal dynamics of its globular cluster population. We make use of a homogeneous, up-to-date data set with kinematics, structural
Here we examine the Milky Ways GC system to estimate the fraction of accreted versus in situ formed GCs. We first assemble a high quality database of ages and metallicities for 93 Milky Way GCs from literature deep colour-magnitude data. The age-meta
We perform integrated spectroscopy of 24 Galactic globular clusters. Spectra are observed from one core radius for each cluster with a high wavelength resolution of ~2.0 A FWHM. In combination with two existing data sets from Puzia et al. (2002) and
(ABRIDGED) Globular clusters trace the formation and evolution of the Milky Way and surrounding galaxies, and outline their chemical enrichment history. To accomplish these tasks it is important to have large samples of clusters with homogeneous data
We present central velocity dispersions, masses, mass to light ratios ($M/L$s), and rotation strengths for 25 Galactic globular clusters. We derive radial velocities of 1951 stars in 12 globular clusters from single order spectra taken with Hectochel