ترغب بنشر مسار تعليمي؟ اضغط هنا

Near-Infrared Spectroscopy of TW Hya: A Revised Spectral Type and Comparison with Magnetospheric Accretion Models

201   0   0.0 ( 0 )
 نشر من قبل William Vacca
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present high signal-to-noise, moderate spectral resolution (R ~ 2000-2500) near-infrared (0.8-5.0 micron) spectroscopy of the nearby T Tauri star TW Hya. By comparing the spectrum and the equivalent widths of several atomic and molecular features with those for stars in the IRTF near-infrared library, we revise the spectral type to M2.5V, which is later than usually adopted (K7V). This implies a substantially cooler stellar temperature than previously assumed. Comparison with various pre-main sequence models suggests that TW Hya is only ~3 Myr old; much younger than the usually adopted 8 - 10 Myr. Analysis of the relative strengths of the H lines seen in the spectrum yields estimates for the temperature and density of the emitting region of T_e > 7500 K and n_e ~ 10^{12} - 10^{13} cm^{-3}. The thickness of the emitting region is 10^2 - 10^4 km and the covering fraction is f_ast ~ 0.04. Our derived physical parameter values agree with the predictions of the magnetospheric accretion scenario. The highest signal-to-noise H lines have profiles that indicate multiple emission components. We derive an excess spectrum (above that of the M2.5V template) that peaks in the H band. Although our derived veiling values, ~ 0.1, agree with previous estimates, the excess spectrum does not match that of current models in which this flux is generated by an inner optically thin disk. We suggest that the excess flux spectrum instead reflects the differences in atmospheric opacity, gravity, and age between TW Hya and older, higher gravity field M2.5 dwarfs.



قيم البحث

اقرأ أيضاً

338 - A. K. Dupree 2012
The nearest accreting T Tauri star, TW Hya was observed with spectroscopic and photometric measurements simultaneous with a long se gmented exposure using the CHANDRA satellite. Contemporaneous optical photometry from WASP-S indicates a 4.74 day peri od was present during this time. Absence of a similar periodicity in the H-alpha flux and the total X-ray flux points to a different source of photometric variations. The H-alpha emission line appears intrinsically broad and symmetric, and both the profile and its variability suggest an origin in the post-shock cooling region. An accretion event, signaled by soft X-rays, is traced spectroscopically for the first time through the optical emission line profiles. After the accretion event, downflowing turbulent material observed in the H-alpha and H-beta lines is followed by He I (5876A) broadening. Optical veiling increases with a delay of about 2 hours after the X-ray accretion event. The response of the stellar coronal emission to an increase in the veiling follows about 2.4 hours later, giving direct evidence that the stellar corona is heated in part by accretion. Subsequently, the stellar wind becomes re-established. We suggest a model that incorporates this sequential series of events: an accretion shock, a cooling downflow in a supersonically turbulent region, followed by photospheric and later, coronal heating. This model naturally explains the presence of broad optical and ultraviolet lines, and affects the mass accretion rates determined from emission line profiles.
We present new photometric and spectroscopic data for the M-type members of the TW Hya association with the aim of a comprehensive study of accretion, disks and magnetic activity at the critical age of ~10 Myr where circumstellar matter disappears.
167 - R. Garcia Lopez 2021
Stars form by accreting material from their surrounding disks. There is a consensus that matter flowing through the disk is channelled onto the stellar surface by the stellar magnetic field. This is thought to be strong enough to truncate the disk cl ose to the so-called corotation radius where the disk rotates at the same rate as the star. Spectro-interferometric studies in young stellar objects show that Hydrogen is mostly emitted in a region of a few milliarcseconds across, usually located within the dust sublimation radius. Its origin is still a matter of debate and it can be interpreted as coming from the stellar magnetosphere, a rotating wind or a disk. In the case of intermediate-mass Herbig AeBe stars, the fact that the Br gamma emission is spatially resolved rules out that most of the emission comes from the magnetosphere. This is due to the weak magnetic fields (some tenths of G) detected in these sources, resulting in very compact magnetospheres. In the case of T Tauri sources, their larger magnetospheres should make them easier to resolve. However, the small angular size of the magnetosphere (a few tenths of milliarcseconds), along with the presence of winds emitting in Hydrogen make the observations interpretation challenging. Here, we present direct evidence of magnetospheric accretion by spatially resolving the inner disk of the 60 pc T Tauri star TW Hydrae through optical long baseline interferometry. We find that the hydrogen near-infrared emission comes from a region approximately 3.5 stellar radii (R*) across. This region is within the continuum dusty disk emitting region (Rcont = 7 R*) and smaller than the corotation radius which is twice as big. This indicates that the hydrogen emission originates at the accretion columns, as expected in magnetospheric accretion models, rather than in a wind emitted at much larger distance (>1au).
We present broad-band mid-resolution X-Shooter/VLT spectra for four brown dwarfs of the TW Hya association. Our targets comprise substellar analogs representing the different evolutionary phases in young stellar evolution: For the two diskless brown dwarfs, TWA-26 and TWA-29, we determine the stellar parameters and we study their chromospheric emission line spectrum. For the two accreting brown dwarfs, TWA-27 and TWA-28, we estimate the mass accretion rates from empirical correlations between emission line luminosities and the accretion luminosity.
We perform revised spectral calibrations for the AKARI near-infrared grism to quantitatively correct for the effect of the wavelength-dependent refractive index. The near-infrared grism covering the wavelength range of 2.5--5.0 micron with a spectral resolving power of 120 at 3.6 micron, is found to be contaminated by second-order light at wavelengths longer than 4.9 micron which is especially serious for red objects. First, we present the wavelength calibration considering the refractive index of the grism as a function of the wavelength for the first time. We find that the previous solution is positively shifted by up to 0.01 micron compared with the revised wavelengths at 2.5--5.0 micron. In addition, we demonstrate that second-order contamination occurs even with a perfect order-sorting filter owing to the wavelength dependence of the refractive index. Second, the spectral responses of the system from the first- and second-order light are simultaneously obtained from two types of standard objects with different colors. The response from the second-order light suggests leakage of the order-sorting filter below 2.5 micron. The relations between the output of the detector and the intensities of the first- and second-order light are formalized by a matrix equation that combines the two orders. The removal of the contaminating second-order light can be achieved by solving the matrix equation. The new calibration extends the available spectral coverage of the grism mode from 4.9 micron up to 5.0 micron. The revision can be used to study spectral features falling in these extended wavelengths, e.g., the carbon monoxide fundamental ro-vibrational absorption within nearby active galactic nuclei.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا