ترغب بنشر مسار تعليمي؟ اضغط هنا

Bifurcations in the Lozi map

276   0   0.0 ( 0 )
 نشر من قبل Vicente Botella-Soler
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the presence in the Lozi map of a type of abrupt order-to-order and order-to-chaos transitions which are mediated by an attractor made of a continuum of neutrally stable limit cycles, all with the same period.



قيم البحث

اقرأ أيضاً

We report on transcritical bifurcations of periodic orbits in non-integrable two-dimensional Hamiltonian systems. We discuss their existence criteria and some of their properties using a recent mathematical description of transcritical bifurcations i n families of symplectic maps. We then present numerical examples of transcritical bifurcations in a class of generalized Henon-Heiles Hamiltonians and illustrate their stabilities and unfoldings under various perturbations of the Hamiltonians. We demonstrate that for Hamiltonians containing straight-line librating orbits, the transcritical bifurcation of these orbits is the typical case which occurs also in the absence of any discrete symmetries, while their isochronous pitchfork bifurcation is an exception. We determine the normal forms of both types of bifurcations and derive the uniform approximation required to include transcritically bifurcating orbits in the semiclassical trace formula for the density of states of the quantum Hamiltonian. We compute the coarse-grained density of states in a specific example both semiclassically and quantum mechanically and find excellent agreement of the results.
We study entanglement in two coupled quartic oscillators. It is shown that the entanglement, as measured by the von Neumann entropy, increases with the classical chaos parameter for generic chaotic eigenstates. We consider certain isolated periodic o rbits whose bifurcation sequence affects a class of quantum eigenstates, called the channel localized states. For these states, the entanglement is a local minima in the vicinity of a pitchfork bifurcation but is a local maxima near a anti-pitchfork bifurcation. We place these results in the context of the close connections that may exist between entanglement measures and conventional measures of localization that have been much studied in quantum chaos and elsewhere. We also point to an interesting near-degeneracy that arises in the spectrum of reduced density matrices of certain states as an interplay of localization and symmetry.
57 - T. Bartsch , J. Main , G. Wunner 2002
A systematic study of closed classical orbits of the hydrogen atom in crossed electric and magnetic fields is presented. We develop a local bifurcation theory for closed orbits which is analogous to the well-known bifurcation theory for periodic orbi ts and allows identifying the generic closed-orbit bifurcations of codimension one. Several bifurcation scenarios are described in detail. They are shown to have as their constituents the generic codimension-one bifurcations, which combine into a rich variety of complicated scenarios. We propose heuristic criteria for a classification of closed orbits that can serve to systematize the complex set of orbits.
488 - S. Huang , C. Chandre , T. Uzer 2008
We discuss the influence of periodic orbits on the dissociation of a model diatomic molecule driven by a strong bichromatic laser fields. Through the stability of periodic orbits we analyze the dissociation probability when parameters like the two am plitudes and the phase lag between the laser fields, are varied. We find that qualitative features of dissociation can be reproduced by considering a small set of short periodic orbits. The good agreement with direct simulations demonstrates the importance of bifurcations of short periodic orbits in the dissociation dynamics of diatomic molecules.
225 - K. B. Blyuss , S. Gupta 2012
We examine the properties of a recently proposed model for antigenic variation in malaria which incorporates multiple epitopes and both long-lasting and transient immune responses. We show that in the case of a vanishing decay rate for the long-lasti ng immune response, the system exhibits the so-called bifurcations without parameters due to the existence of a hypersurface of equilibria in the phase space. When the decay rate of the long-lasting immune response is different from zero, the hypersurface of equilibria degenerates, and a multitude of other steady states are born, many of which are related by a permutation symmetry of the system. The robustness of the fully symmetric state of the system was investigated by means of numerical computation of transverse Lyapunov exponents. The results of this exercise indicate that for a vanishing decay of long-lasting immune response, the fully symmetric state is not robust in the substantial part of the parameter space, and instead all variants develop their own temporal dynamics contributing to the overall time evolution. At the same time, if the decay rate of the long-lasting immune response is increased, the fully symmetric state can become robust provided the growth rate of the long-lasting immune response is rapid.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا